{\rtf1\ansi\deff0\deftab360 {\fonttbl {\f0\fswiss\fcharset0 Arial} {\f1\froman\fcharset0 Times New Roman} {\f2\fswiss\fcharset0 Verdana} {\f3\froman\fcharset2 Symbol} } {\colortbl; \red0\green0\blue0; } {\info {\author Biblio 7.x}{\operator }{\title Biblio RTF Export}} \f1\fs24 \paperw11907\paperh16839 \pgncont\pgndec\pgnstarts1\pgnrestart Peters B, DiCarlo JJ, Gureckis T, et al. How does the primate brain combine generative and discriminative computations in vision?. 2024. doi: https://doi.org/10.48550/arXiv.2401.06005.\par \par Kuoch M, Chou C-N, Parthasarathy N, et al. Probing Biological and Artificial Neural Networks with Task-dependent Neural Manifolds. In: Conference on Parsimony and Learning (Proceedings Track). Conference on Parsimony and Learning (Proceedings Track). Hong Kong, China; 2023. Available at: https://openreview.net/forum?id=MxBS6aw5Gd.\par \par Margalit E, Lee H, Marques T, DiCarlo JJ, Yamins DLK. Correlation-based spatial layout of deep neural network features generates ventral stream topography. Computation and Systems Neuroscience (COSYNE). 2020. Available at: http://cosyne.org/cosyne20/Cosyne2020_program_book.pdf.\par \par Kar K, DiCarlo JJ. Fast recurrent processing via ventral prefrontal cortex is needed by the primate ventral stream for robust core visual object recognition. BioRxiv. 2020. doi:https://doi.org/10.1101/2020.05.10.086959.\par \par Lee H, Margalit E, Jozwik KM, et al. Topographic deep artificial neural networks reproduce the hallmarks of the primate inferior temporal cortex face processing network. bioRxiv. 2020. doi:https://doi.org/10.1101/2020.07.09.185116.\par \par Jia X, Hong H, DiCarlo JJ. Unsupervised changes in core object recognition behavioral performance are accurately predicted by unsupervised neural plasticity in inferior temporal cortex. BioRxiv. 2020. doi:https://doi.org/10.1101/2020.01.13.900837.\par \par Kubilius J, Schrimpf M, Hong H, et al. Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs. In: Neural Information Processing Systems. Neural Information Processing Systems.; 2019. doi:https://papers.nips.cc/paper/9441-brain-like-object-recognition-with-high-performing-shallow-recurrent-anns.\par \par Jozwik KM, Schrimpf M, Kanwisher N, DiCarlo JJ. To find better neural network models of human vision, find better neural network models of primate vision. BioRxiv. 2019. doi:https://doi.org/10.1101/688390.\par \par Cadieu CF, Hong H, Yamins DLK, Pinto N, Majaj NJ, DiCarlo JJ. The Neural Representation Benchmark and its Evaluation on Brain and Machine. arXiv. 2013. doi:https://arxiv.org/abs/1301.3530.\par \par Rust NC, DiCarlo JJ. Increases in selectivity are offset by increases in tolerance ("invariance") to maintain sparseness across the ventral visual pathway. Society for Neuroscience. 2008:514.8. Available at: https://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=fc0d0a2d-b563-4b41-8311-0805f08bde8a&cKey=8a2c998e-bc76-4d92-96ac-ad5199da59bf&mKey=%7bAFEA068D-D012-4520-8E42-10E4D1AF7944%7d.\par \par }