{\rtf1\ansi\deff0\deftab360 {\fonttbl {\f0\fswiss\fcharset0 Arial} {\f1\froman\fcharset0 Times New Roman} {\f2\fswiss\fcharset0 Verdana} {\f3\froman\fcharset2 Symbol} } {\colortbl; \red0\green0\blue0; } {\info {\author Biblio 7.x}{\operator }{\title Biblio RTF Export}} \f1\fs24 \paperw11907\paperh16839 \pgncont\pgndec\pgnstarts1\pgnrestart DiCarlo JJ, Yamins DLK, Ferguson ME, et al. Let's move forward: Image-computable models and a common model evaluation scheme are prerequisites for a scientific understanding of human visionAbstract. Behavioral and Brain Sciences. 2023;4634. doi:10.1017/S0140525X23001607.\par \par Dapello J, Kar K, Schrimpf M, et al. Aligning Model and Macaque Inferior Temporal Cortex Representations Improves Model-to-Human Behavioral Alignment and Adversarial Robustness. bioRxiv. 2022. doi:https://doi.org/10.1101/2022.07.01.498495.\par \par Bagus AMarliawaty, Marques T, Sanghavi S, DiCarlo JJ, Schrimpf M. Primate Inferotemporal Cortex Neurons Generalize Better to Novel Image Distributions Than Analogous Deep Neural Networks Units. In: SVHRM Workshop at Neural Information Processing Systems (NeurIPS). SVHRM Workshop at Neural Information Processing Systems (NeurIPS). Lisbon, Portugal; 2022. Available at: https://openreview.net/pdf?id=iPF7mhoWkOl.\par \par Geiger F, Schrimpf M, Marques T, DiCarlo JJ. Wiring Up Vision: Minimizing Supervised Synaptic Updates Needed to Produce a Primate Ventral Stream. In: International Conference on Learning Representations 2022 Spotlight. International Conference on Learning Representations 2022 Spotlight.; 2022. doi:10.1101/2020.06.08.140111.\par \par Kar K, Schrimpf M, Schmidt K, DiCarlo JJ. Chemogenetic suppression of macaque V4 neurons produces retinotopically specific deficits in downstream IT neural activity patterns and core object recognition behavior. Journal of Vision. 2021;21(9):2489-2489. doi:https://doi.org/10.1167/jov.21.9.2489.\par \par Schrimpf M, Grath PMc, DiCarlo JJ. Topographic ANNs Predict the Behavioral Effects of Causal Perturbations in Primate Visual Ventral Stream IT. Champalimaud Research Symposium (CRS21). 2021.\par \par Zhuang C, Yan S, Nayebi A, et al. Unsupervised neural network models of the ventral visual stream. Proceedings of the National Academy of Sciences. 2021;118(3):e2014196118. doi:10.1073/pnas.2014196118.\par \par Schrimpf M, Kubilius J, Lee MJ, Murty NAR, Ajemian R, DiCarlo JJ. Integrative Benchmarking to Advance Neurally Mechanistic Models of Human Intelligence. Neuron. 2020. doi:10.1016/j.neuron.2020.07.040.\par \par Dapello J, Marques T, Schrimpf M, Geiger F, Cox DD, DiCarlo JJ. Simulating a Primary Visual Cortex at the Front of CNNs Improves Robustness to Image Perturbations. Neural Information Processing Systems (NeurIPS; spotlight). 2020. doi:10.1101/2020.06.16.154542.\par \par Gan C, Schwartz J, Alter S, et al. ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation. arXiv. 2020. Available at: https://arxiv.org/abs/2007.04954.\par \par Zhuang C, Yan S, Nayebi A, et al. Unsupervised Neural Network Models of the Ventral Visual Stream. bioRxiv. 2020. doi:10.1101/2020.06.16.155556.\par \par Schrimpf M, Kubilius J, Hong H, et al. Using Brain-Score to Evaluate and Build Neural Networks for Brain-Like Object Recognition. In: Computational and Systems Neuroscience (COSYNE). Computational and Systems Neuroscience (COSYNE). Denver, CO; 2019.\par \par }