{\rtf1\ansi\deff0\deftab360 {\fonttbl {\f0\fswiss\fcharset0 Arial} {\f1\froman\fcharset0 Times New Roman} {\f2\fswiss\fcharset0 Verdana} {\f3\froman\fcharset2 Symbol} } {\colortbl; \red0\green0\blue0; } {\info {\author Biblio 7.x}{\operator }{\title Biblio RTF Export}} \f1\fs24 \paperw11907\paperh16839 \pgncont\pgndec\pgnstarts1\pgnrestart Rajalingham R, Sorenson M, Azadi R, Bohn S, DiCarlo JJ, Afraz A. Chronically implantable LED arrays for behavioral optogenetics in primates. Nature Methods. 2021;18(9):1112 - 1116. doi:10.1038/s41592-021-01238-9.\par \par Rajalingham R, Kar K, Sanghavi S, Dehaene S, DiCarlo JJ. The inferior temporal cortex is a potential cortical precursor of orthographic processing in untrained monkeys. Nature Communications. 2020;11(1). doi:10.1038/s41467-020-17714-3.\par \par Tremblay S, Acker L, Afraz A, et al. An Open Resource for Non-human Primate Optogenetics. Neuron. 2020. doi:10.1016/j.neuron.2020.09.027.\par \par Kubilius J, Schrimpf M, Hong H, et al. Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs. In: Neural Information Processing Systems. Neural Information Processing Systems.; 2019. doi:https://papers.nips.cc/paper/9441-brain-like-object-recognition-with-high-performing-shallow-recurrent-anns.\par \par Rajalingham R, DiCarlo JJ. Reversible Inactivation of Different Millimeter-Scale Regions of Primate IT Results in Different Patterns of Core Object Recognition Deficits. Neuron. 2019;102(2):493 - 505.e5. doi:10.1016/j.neuron.2019.02.001.\par \par Schrimpf M, Kubilius J, Hong H, et al. Using Brain-Score to Evaluate and Build Neural Networks for Brain-Like Object Recognition. In: Computational and Systems Neuroscience (COSYNE). Computational and Systems Neuroscience (COSYNE). Denver, CO; 2019.\par \par Schrimpf M, Kubilius J, Hong H, et al. Brain-Score: Which Artificial Neural Network for Object Recognition is most Brain-Like?. bioRxiv. 2018. doi:https://doi.org/10.1101/407007.\par \par Rajalingham R, Issa EB, Bashivan P, Kar K, Schmidt K, DiCarlo JJ. Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks. The Journal of Neuroscience. 2018;38(33):7255 - 7269. doi:10.1523/JNEUROSCI.0388-18.2018.\par \par Rajalingham R, Issa EB, Bashivan P, Kar K, Schmidt K, DiCarlo JJ. Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks. bioRxiv. 2018. doi:https://doi.org/10.1101/240614.\par \par Rajalingham R, DiCarlo JJ. Reversible inactivation of different millimeter-scale regions of primate IT results in different patterns of core object recognition deficits. bioRxiv. 2018. doi:https://doi.org/10.1101/390245.\par \par }