Publications

Export 156 results:
2018
Kar K, Kubilius J, Schmidt K, Issa EB, DiCarlo JJ. Evidence that recurrent circuits are critical to the ventral stream's execution of core object recognition behavior. bioRxiv. 2018. doi:https://doi.org/10.1101/354753.
Rajalingham R, Issa EB, Bashivan P, Kar K, Schmidt K, DiCarlo JJ. Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks. The Journal of Neuroscience. 2018;38(33):7255 - 7269. doi:10.1523/JNEUROSCI.0388-18.2018.
Rajalingham R, Issa EB, Bashivan P, Kar K, Schmidt K, DiCarlo JJ. Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks. bioRxiv. 2018. doi:https://doi.org/10.1101/240614.
Ohayon S, Caravaca-Aguirre A, Piestun R, DiCarlo JJ. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging. Biomedical Optics Express. 2018;9(4):1492-1509. doi:10.1364/BOE.9.001492.
Issa EB, Cadieu CF, DiCarlo JJ. Neural dynamics at successive stages of the ventral visual stream are consistent with hierarchical error signals. eLife. 2018;7. doi:10.7554/eLife.42870.
Rajalingham R, DiCarlo JJ. Reversible inactivation of different millimeter-scale regions of primate IT results in different patterns of core object recognition deficits. bioRxiv. 2018. doi:https://doi.org/10.1101/390245.
Nayebi A, Bear D, Kubilius J, et al. Task-Driven Convolutional Recurrent Models of the Visual System. arXiv. 2018. doi:https://arxiv.org/abs/1807.00053.
Bashivan P, Tensen M, DiCarlo JJ. Teacher Guided Architecture Search. arXiv. 2018. doi:https://arxiv.org/abs/1808.01405.
2019
Kubilius J, Schrimpf M, Hong H, et al. Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs. In: Neural Information Processing Systems. Neural Information Processing Systems.; 2019. doi:https://papers.nips.cc/paper/9441-brain-like-object-recognition-with-high-performing-shallow-recurrent-anns.
Lee MJ, DiCarlo JJ. Comparing novel object learning in humans, models, and monkeys. Journal of Vision. 2019;19(10):114b. doi:10.1167/19.10.114b.
Kar K, Kubilius J, Schmidt K, Issa EB, DiCarlo JJ. Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior. Nature Neuroscience. 2019;22(6):974 - 983. doi:10.1038/s41593-019-0392-5.
Harris KD, Groh JM, DiCarlo JJ, et al. Funcitional Properties of Circuits, Cellular Populations, and Areas. In: Singer W, Sejnowski TJ, Rakic P The Neocortex.Vol 27. The Neocortex. Cambridge, MA: The MIT Press; 2019:223-265. doi:10.7551/mitpress/12593.001.0001. (1.06 MB)
Bashivan P, Kar K, DiCarlo JJ. Neural population control via deep image synthesis. Science. 2019;364(6439):eaav9436. doi:10.1126/science.aav9436.
Rajalingham R, DiCarlo JJ. Reversible Inactivation of Different Millimeter-Scale Regions of Primate IT Results in Different Patterns of Core Object Recognition Deficits. Neuron. 2019;102(2):493 - 505.e5. doi:10.1016/j.neuron.2019.02.001.
Jozwik KM, Schrimpf M, Kanwisher N, DiCarlo JJ. To find better neural network models of human vision, find better neural network models of primate vision. BioRxiv. 2019. doi:https://doi.org/10.1101/688390.
Schrimpf M, Kubilius J, Hong H, et al. Using Brain-Score to Evaluate and Build Neural Networks for Brain-Like Object Recognition. In: Computational and Systems Neuroscience (COSYNE). Computational and Systems Neuroscience (COSYNE). Denver, CO; 2019.
2020
Rajalingham R, Sorenson M, Azadi R, Bohn S, DiCarlo JJ, Afraz A. Chronically implantable LED arrays for behavioral optogenetics in primates. bioRxiv. 2020. doi:10.1101/2020.09.10.291583. (2.64 MB)
Margalit E, Lee H, Marques T, DiCarlo JJ, Yamins DLK. Correlation-based spatial layout of deep neural network features generates ventral stream topography. Computation and Systems Neuroscience (COSYNE). 2020. Available at: http://cosyne.org/cosyne20/Cosyne2020_program_book.pdf.
Kar K, DiCarlo JJ. Fast recurrent processing via ventral prefrontal cortex is needed by the primate ventral stream for robust core visual object recognition. BioRxiv. 2020. doi:https://doi.org/10.1101/2020.05.10.086959.
Rajalingham R, Kar K, Sanghavi S, Dehaene S, DiCarlo JJ. The inferior temporal cortex is a potential cortical precursor of orthographic processing in untrained monkeys. Nature Communications. 2020;11(1). doi:10.1038/s41467-020-17714-3.
Schrimpf M, Kubilius J, Lee MJ, Murty NAR, Ajemian R, DiCarlo JJ. Integrative Benchmarking to Advance Neurally Mechanistic Models of Human Intelligence. Neuron. 2020. doi:10.1016/j.neuron.2020.07.040. (1.04 MB)
Tremblay S, Acker L, Afraz A, et al. An Open Resource for Non-human Primate Optogenetics. Neuron. 2020. doi:10.1016/j.neuron.2020.09.027.
Dapello J, Marques T, Schrimpf M, Geiger F, Cox DD, DiCarlo JJ. Simulating a Primary Visual Cortex at the Front of CNNs Improves Robustness to Image Perturbations. Neural Information Processing Systems (NeurIPS; spotlight). 2020. doi:10.1101/2020.06.16.154542. (2.48 MB)
Gan C, Schwartz J, Alter S, et al. ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation. arXiv. 2020. Available at: https://arxiv.org/abs/2007.04954. (7.06 MB)
Lee H, Margalit E, Jozwik KM, et al. Topographic deep artificial neural networks reproduce the hallmarks of the primate inferior temporal cortex face processing network. bioRxiv. 2020. doi:https://doi.org/10.1101/2020.07.09.185116.
Jia X, Hong H, DiCarlo JJ. Unsupervised changes in core object recognition behavioral performance are accurately predicted by unsupervised neural plasticity in inferior temporal cortex. BioRxiv. 2020. doi:https://doi.org/10.1101/2020.01.13.900837.
Zhuang C, Yan S, Nayebi A, et al. Unsupervised Neural Network Models of the Ventral Visual Stream. bioRxiv. 2020. doi:10.1101/2020.06.16.155556. (2.7 MB)
2021
Kar K, Schrimpf M, Schmidt K, DiCarlo JJ. Chemogenetic suppression of macaque V4 neurons produces retinotopically specific deficits in downstream IT neural activity patterns and core object recognition behavior. Journal of Vision. 2021;21(9):2489-2489. doi:https://doi.org/10.1167/jov.21.9.2489.
Rajalingham R, Sorenson M, Azadi R, Bohn S, DiCarlo JJ, Afraz A. Chronically implantable LED arrays for behavioral optogenetics in primates. Nature Methods. 2021;18(9):1112 - 1116. doi:10.1038/s41592-021-01238-9. (6.95 MB)
Baidya A, Dapello J, DiCarlo JJ, Marques T. Combining Different V1 Brain Model Variants to Improve Robustness to Image Corruptions in CNNs. Shared Visual Representations in Human & Machine Intelligence - NeurIPS Workshop. 2021. Available at: https://arxiv.org/abs/2110.10645. (1000.31 KB)
Murty NAR, Bashivan P, Abate A, DiCarlo JJ, Kanwisher N. Computational models of category-selective brain regions enable high-throughput tests of selectivity. Nature Communications. 2021;12(1). doi:10.1038/s41467-021-25409-6. (6.47 MB)
Kar K, DiCarlo JJ. Fast Recurrent Processing Via Ventral Prefrontal Cortex is Needed by the Primate Ventral Stream for Robust Core Visual Object Recognition. Neuron. 2021;109(1):164-167.e5. doi:https://doi.org/10.1016/j.neuron.2020.09.035. (3.92 MB)
Marques T, Schrimpf M, DiCarlo JJ. Multi-scale hierarchical neural network models that bridge from single neurons in the primate primary visual cortex to object recognition behavior. bioRxiv. 2021. doi:10.1101/2021.03.01.433495. (3.12 MB)
Dapello J, Feather J, Marques T, et al. Neural Population Geometry Reveals the Role of Stochasticity in Robust Perception. In: Neural Information Processing Systems (NeurIPS). Neural Information Processing Systems (NeurIPS). Lisbon, Portugal; 2021. Available at: https://proceedings.neurips.cc/paper/2021/file/8383f931b0cefcc631f070480ef340e1-Paper.pdf. (4.04 MB)
Gan C, Zhou S, Schwartz J, et al. The ThreeDWorld Transport Challenge: A Visually Guided Task-and-Motion Planning Benchmark for Physically Realistic Embodied AI. arXiv. 2021. doi:arXiv:2103.14025. (6.79 MB)
Schrimpf M, Grath PMc, DiCarlo JJ. Topographic ANNs Predict the Behavioral Effects of Causal Perturbations in Primate Visual Ventral Stream IT. Champalimaud Research Symposium (CRS21). 2021. (3.47 MB)
Jia X, Hong H, DiCarlo JJ. Unsupervised changes in core object recognition behavior are predicted by neural plasticity in inferior temporal cortex. eLife. 2021;10. doi:10.7554/eLife.60830.
Zhuang C, Yan S, Nayebi A, et al. Unsupervised neural network models of the ventral visual stream. Proceedings of the National Academy of Sciences. 2021;118(3):e2014196118. doi:10.1073/pnas.2014196118. (2.71 MB)
2022
Guo C, Lee MJ, Leclerc G, et al. Adversarially trained neural representations may already be as robust as corresponding biological neural representations. arXiv. 2022. doi:https://doi.org/10.48550/arXiv.2206.11228. (1.99 MB)
Dapello J, Kar K, Schrimpf M, et al. Aligning Model and Macaque Inferior Temporal Cortex Representations Improves Model-to-Human Behavioral Alignment and Adversarial Robustness. bioRxiv. 2022. doi:https://doi.org/10.1101/2022.07.01.498495.
Bagus AMarliawaty, Marques T, Sanghavi S, DiCarlo JJ, Schrimpf M. Primate Inferotemporal Cortex Neurons Generalize Better to Novel Image Distributions Than Analogous Deep Neural Networks Units. In: SVHRM Workshop at Neural Information Processing Systems (NeurIPS). SVHRM Workshop at Neural Information Processing Systems (NeurIPS). Lisbon, Portugal; 2022. Available at: https://openreview.net/pdf?id=iPF7mhoWkOl. (3.86 MB)
Geiger F, Schrimpf M, Marques T, DiCarlo JJ. Wiring Up Vision: Minimizing Supervised Synaptic Updates Needed to Produce a Primate Ventral Stream. In: International Conference on Learning Representations 2022 Spotlight. International Conference on Learning Representations 2022 Spotlight.; 2022. doi:10.1101/2020.06.08.140111. (1.45 MB)
2023
Zador A, Escola S, Richards B, et al. Catalyzing next-generation Artificial Intelligence through NeuroAI. Nature Communications. 2023;14(1):1597. doi:10.1038/s41467-023-37180-x. (749.44 KB)
Lee MJ, DiCarlo JJ. An empirical assay of view-invariant object learning in humans and comparison with baseline image-computable models. bioRxiv. 2023:2022.12.31.522402. doi:https://www.biorxiv.org/content/10.1101/2022.12.31.522402v1.
Mieczkowski E, Abate A, De Faria W, et al. fROI-level computational models enable broad-scale experimental testing and expose key divergences between models and brains. Journal of Vision. 2023;23(9):5788 - 5788. Available at: https://doi.org/10.1167/jov.23.9.5788.
Lee MJ, DiCarlo JJ. How well do rudimentary plasticity rules predict adult visual object learning?. Kietzmann TChristian. PLOS Computational Biology. 2023;19(12):e1011713. doi:10.1371/journal.pcbi.1011713. (11.69 MB)
Lee MJ, DiCarlo JJ. How well do rudimentary plasticity rules predict adult visual object learning?. Kietzmann TChristian. PLOS Computational Biology. 2023;19(12):e1011713. doi:10.1371/journal.pcbi.1011713. (11.69 MB)
DiCarlo JJ, Yamins DLK, Ferguson ME, et al. Let's move forward: Image-computable models and a common model evaluation scheme are prerequisites for a scientific understanding of human visionAbstract. Behavioral and Brain Sciences. 2023;4634. doi:10.1017/S0140525X23001607. (2.56 MB)
Kuoch M, Chou C-N, Parthasarathy N, et al. Probing Biological and Artificial Neural Networks with Task-dependent Neural Manifolds. In: Conference on Parsimony and Learning (Proceedings Track). Conference on Parsimony and Learning (Proceedings Track). Hong Kong, China; 2023. Available at: https://openreview.net/forum?id=MxBS6aw5Gd. (2.75 MB)
Kar K, DiCarlo JJ. The Quest for an Integrated Set of Neural Mechanisms Underlying Object Recognition in Primates. arXiv. 2023. doi: https://doi.org/10.48550/arXiv.2312.05956. (5.76 MB)
Gaziv G, Lee MJ, DiCarlo JJ. Robustified ANNs Reveal Wormholes Between Human Category Percepts. arXiv. 2023. doi: https://doi.org/10.48550/arXiv.2308.06887 Focus to learn more. (3.53 MB)
Gaziv G, Lee MJ, DiCarlo JJ. Strong and Precise Modulation of Human Percepts via Robustified ANNs. In: Neural Information Processing Systems. Neural Information Processing Systems. New Orleans, Louisiana; 2023. Available at: https://openreview.net/pdf?id=5GmTI4LNqX. (3.26 MB)
Margalit E, Lee H, Finzi D, DiCarlo JJ, Grill-Spector K, Yamins DLK. A Unifying Principle for the Functional Organization of Visual Cortex. bioRxiv. 2023. doi: https://doi.org/10.1101/2023.05.18.541361. (6.57 MB)

Pages