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Li N, Cox DD, Zoccolan D, DiCarlo JJ. What response properties do
individual neurons need to underlie position and clutter “invariant”
object recognition? J Neurophysiol 102: 360–376, 2009. First pub-
lished May 13, 2009; doi:10.1152/jn.90745.2008. Primates can easily
identify visual objects over large changes in retinal position—a
property commonly referred to as position “invariance.” This ability is
widely assumed to depend on neurons in inferior temporal cortex (IT)
that can respond selectively to isolated visual objects over similarly
large ranges of retinal position. However, in the real world, objects
rarely appear in isolation, and the interplay between position invari-
ance and the representation of multiple objects (i.e., clutter) remains
unresolved. At the heart of this issue is the intuition that the repre-
sentations of nearby objects can interfere with one another and that the
large receptive fields needed for position invariance can exacerbate
this problem by increasing the range over which interference acts.
Indeed, most IT neurons’ responses are strongly affected by the
presence of clutter. While external mechanisms (such as attention) are
often invoked as a way out of the problem, we show (using recorded
neuronal data and simulations) that the intrinsic properties of IT
population responses, by themselves, can support object recognition
in the face of limited clutter. Furthermore, we carried out extensive
simulations of hypothetical neuronal populations to identify the es-
sential individual-neuron ingredients of a good population represen-
tation. These simulations show that the crucial neuronal property to
support recognition in clutter is not preservation of response magni-
tude, but preservation of each neuron’s rank-order object preference
under identity-preserving image transformations (e.g., clutter). Be-
cause IT neuronal responses often exhibit that response property,
while neurons in earlier visual areas (e.g., V1) do not, we suggest that
preserving the rank-order object preference regardless of clutter,
rather than the response magnitude, more precisely describes the goal
of individual neurons at the top of the ventral visual stream.

I N T R O D U C T I O N

Primate brains have the remarkable ability to recognize
visual objects across the wide range of retinal images that each
object can produce – a property known as “invariance” or
“tolerance” (see DISCUSSION). To accomplish this task, the
visual system must transform the object shape information
acquired as a pixel-like image by the retina into a neuronal
representation that is unaffected by identity-preserving changes
in the image (due to variation in the object’s position, size,
pose, its illumination conditions, or the presence of other
objects, i.e., “clutter”). This transformation is carried out along
the hierarchal processing stages of the ventral visual stream

that culminates in the inferior temporal (IT) cortex (Hung et al.
2005; Logothetis and Sheinberg 1996; Tanaka 1996).

Representation of multiple objects poses an especially dif-
ficult computational challenge. During natural vision, objects
almost never appear in isolation and they appear on very
different parts of the retina. This introduces two common
identity-preserving image variations that our visual system
must simultaneously deal with to recognize each object: vari-
ability in object position and the presence of visual clutter.
Understanding the brain’s solution to this problem is compli-
cated by two observations. First, contemporary data reveal
highly varied amounts of position sensitivity in individual IT
neurons—each neuron’s response magnitude can be strongly
modulated by changes in object position; (Ito et al. 1995; Op de
Beeck and Vogels 2000; Zoccolan et al. 2007), with IT recep-
tive fields often spanning only a few degrees of visual angle
(DiCarlo and Maunsell 2003). Second, IT neuronal responses
to isolated objects are often highly sensitive to clutter—re-
sponses are powerfully reduced by the addition of other objects
(Chelazzi et al. 1998; Miller et al. 1993; Missal et al. 1999;
Rolls and Tovee 1995; Rolls et al. 2003; Sato 1989; Sheinberg
and Logothetis 2001; Zoccolan et al. 2005, 2007), in some
cases by as much as 50%.

In spite of these coding constraints at the neuronal level,
humans and primates can effortlessly identify and categorize
objects in natural scenes. This raises the question of what
mechanisms allow the ventral stream to support position-
invariant recognition in clutter. One possible explanation to
deal with position invariance relies on the observation that IT
neurons typically maintain their rank-order object selectivity
within their receptive fields even when the magnitude of their
responses is strongly modulated by changes in object position
(DiCarlo and Maunsell 2003; Ito et al. 1995; Logothetis and
Sheinberg 1996; Op de Beeck and Vogels 2000; Tovée et al.
1994). Several authors have proposed that this property may
allow a population of IT neurons to support position-invariant
recognition (e.g., Gross et al. 1993; Logothetis and Sheinberg
1996; Vogels and Orban 1996). This is a reasonable but
untested hypothesis because no study has investigated whether
preservation of object preference across position is sufficient to
support position-invariant recognition. More importantly, the
previous intuition applies to objects presented in isolation and
may not extrapolate to more natural conditions in which
multiple objects are present within a neuron’s receptive field
(i.e., clutter). In fact, several studies have proposed that addi-
tional mechanisms may be necessary to filter out the interfer-
ence of clutter—e.g., shrinking of IT neurons’ receptive fields

Address for reprint requests and other correspondence: J. DiCarlo, McGovern
Institute for Brain Research, Massachusetts Institute of Technology, 77 Massa-
chusetts Ave., Cambridge, MA 02139 (E-mail: dicarlo@mit.edu).

J Neurophysiol 102: 360–376, 2009.
First published May 13, 2009; doi:10.1152/jn.90745.2008.

360 0022-3077/09 $8.00 Copyright © 2009 The American Physiological Society www.jn.org

 on January 4, 2010 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


(Rolls et al. 2003) or recruitment of attentional mechanisms to
attenuate the suppressive effect of flanking objects (Chelazzi
et al. 1998; Moran and Desimone 1985; Sundberg et al. 2009).

In this study, we first asked if the intrinsic response proper-
ties of a small population of IT neurons (i.e., earliest part of
response, no attentional cuing) could by themselves support
object identification while tolerating some degree of clutter.
Previous studies have shown that linear read-out of IT popu-
lation can support position invariant recognition of isolated
objects (Hung et al. 2005). Using similar techniques, we found
that the IT population as a whole can readily support position-
invariant recognition even when multiple objects are present
(i.e., limited clutter).

These neuronal results demonstrate that clutter invariant
recognition can be achieved through fast, feed-forward read-
out of the IT neuronal representation (at least for limited
clutter), and it led us to reconsider what individual-neuron
response properties allowed IT to underlie such invariant
object recognition from a population perspective. To do this,
we simulated a wide range of potential neuronal populations
with the goal of separating out the essential single-neuron
ingredients of a “good” representation from those that are
superfluous. We found that preservation of response magnitude
in the face of position change (i.e., neurons with large receptive
fields) or in the face of clutter—properties that individual IT
neurons typically lack—are not necessary to robustly represent
multiple objects in a neuronal population. Moreover, the lack
of position sensitivity in response magnitude can be detrimen-
tal in that it limits the flexibility of the representation to convey
the necessary object position information to unambiguously
represent multiple objects. Instead we show that a much more
important requirement is that individual neurons preserve their
rank-order object selectivity across object position changes and
clutter conditions. Indeed IT neurons typically exhibit such a
property, even when their response magnitude is highly sensi-
tive to position and clutter (Brincat and Connor 2004; Ito et al.
1995; Logothetis and Sheinberg 1996; Zoccolan et al. 2005),
whereas neurons in early visual areas (e.g., V1) do not.

Overall, these findings provide the first systematic demon-
stration of the key role played by preservation of rank-order
selectivity in supporting invariant recognition—a notion that
has been previously suggested (e.g., Gross et al. 1993; Logo-
thetis and Sheinberg 1996; Vogels and Orban 1996) but never
tested by decoding either recorded or simulated neuronal pop-
ulations. More importantly, these results show that, at least
under some conditions, clutter invariant recognition can be
achieved through fast, feed-forward read-out of the IT neuronal
representation, thus challenging the view that position-invari-
ant recognition in clutter must be attained through attentional
feedback.

M E T H O D S

Physiological recording

We recorded from well-isolated neurons in anterior IT in two
rhesus macaque monkeys. Surgical procedures, eye monitoring, and
recording methods were done using established techniques (DiCarlo
and Maunsell 2000; Zoccolan et al. 2005) and were performed in
accordance with the MIT Committee on Animal Care.

Visual stimulus displays (scenes) consisted of combinations of
three possible objects (star, triangle, and cross shapes; 1.5° in size;

solid white 57 Cd/m2) that could appear in three possible locations (at
the center of gaze, 2° above, and 2° below) on a uniform gray
background (27 Cd/m2; see Fig. 1). All combinations of one object in
each possible position (9 scenes), two objects (without duplicates, 18
scenes), and three objects (with no object repeated in the same scene,
6 scenes; 33 scenes in total) were presented to the passively fixating
monkeys with no attentional cuing to any object or retinal position.
The scenes were presented at a rapid, but natural viewing rate (5
scene/s, 100-ms presentation followed by 100 ms blank) (DiCarlo and
Maunsell 2003), and randomly interleaved. For these reasons, as well
as our previous detailed assessment of this issue (Zoccolan et al.
2005), we argue that attentional shifts do not contribute significantly
to the results presented here.

Both monkeys had been previously trained to perform an identifi-
cation task with the three objects appearing randomly interleaved in
each of the three positions (in isolation), and both monkeys achieved
�90% accuracy in this task. Monkeys performed this identification
task while we advanced the electrode, and all isolated neurons that
were responsive during this task (t-test; P � 0.05) were further studied
with the 33 scenes under the fixation conditions described in the
preceding text. Between 10 and 30 repetitions of each scene were
presented while recording from each IT neuron.

A total of 68 neurons were serially recorded (35 cells in monkey 1
and 33 in monkey 2). We took these units to be a reasonably unbiased
sample of the IT population in that we only required good isolation
and responsiveness. Because each of these neurons was tested with
multiple repetitions of the exact same set of visual scenes, we could
estimate the IT population response to each 100-ms glimpse of a scene
by randomly drawing the response of each neuron during one presen-
tation of that scene, (note that this procedure cannot optimize for any
trial-by-trial correlation in the responses, see DISCUSSION) (see also
Hung et al. 2005).

Data analysis

All analyses and simulations were done using in-house code developed
in Matlab (Mathworks, Natick, MA) and publicly available Matlab SVM
toolbox (http://www.isis.ecs.soton.ac.uk/isystems/kernel). We used clas-
sification analysis to assess neuronal population performance on two
recognition tasks: the “position-invariant” object recognition task and
the “position-specific” object recognition task, (see Fig. 1A). In its
general form, classification analysis takes labeled multivariate data
belonging to two classes (e.g., “the star is present” and “the star is not
present”) and seeks a decision boundary that best separates the two
classes. Our goal was to measure the “goodness” of a neuronal
population at conveying information that can be accessed by down-
stream areas using simple linear read-out mechanisms. Thus we used
linear discriminant analysis as a simple unbiased way of asking that
question (Fisher 1936). Because each linear discriminant simply
performs a weighted sum with a threshold (Gochin 1994), the use of
linear classifiers allows us to assess what information in a neuronal
population can be directly extracted by pooling mechanisms that
roughly parallel those available to real downstream neurons. In other
words, linear classifiers do not provide a total measure of information
in the population, but instead provide a measure of the information
explicitly available in the IT population to directly support a visual
task (i.e., information available to a linear decoder).

Because each task had more than two possible answers (e.g.,
“which of the 3 objects was present?”), overall performance was
assessed using standard multi-classification methods in which multi-
ple two-way linear classifiers were constructed (Hung et al. 2005;
Rifkin et al. 2007) (see following text for details). Each two-way
linear classifier had the form

f�x� � wT x � b (1)

where the classifier reported “object present” for f(x)�0 and “ob-
ject not present” for f(x)�0. x is an N-dimensional column vector
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containing the responses of N neurons in a population to a given
presentation (i.e., in a given trial) of a particular scene (spike counts
in a small time window for real neurons or simulated response rates
for simulated neurons). w is a N-dimensional column vector of
weights, b is a constant threshold that, together, describe the position
and orientation of the decision boundary. w and b were found using
the standard method of Fisher linear discriminant using neuronal
response data from a labeled training set (Duda et al. 2001). Perfor-
mance testing was always carried out using data that was not included
in the training set (data partitioning for training and testing is de-
scribed in sections in the following text)

w � Ŝ�1��̂1 � �̂2� b �
1

2
��̂1 � �̂2�Ŝ

�1 ��̂2 � �̂1�

where

�̂i �
1

Ni
�
n�1

Ni

xi,n Ŝ �
1

N1 � N2
�
i�1

2 �
n�1

Ki

�xi,n��̂i��xi,n��̂i�
T

�̂1 and �̂2 are the mean of all the training data belonging to each of
the two classes (x1’s and x2’s) and Ŝ is the total within-class covari-
ance matrix (Fisher linear discriminant analysis assumes that the data
belonging to 2 classes are identically distributed, S1 � S2 � Ŝ). Ki is
the number of data points in each class used for classifier training.

How well the classifier learns the decision boundary from training
data can impact classification performance—more training data can
lead to better estimate of the decision boundary and more advanced
classifiers such as a support vector machines (SVMs) (Duda et al.
2001) are better at finding the optimal decision boundary. However,
for the results presented here, linear classifier performance is almost
entirely dependent on how well the data are formatted. (That is, how
linearly separable are the two classes?) This was verified by using
SVM classifiers in some tested conditions. Results obtained were
qualitatively unaffected: SVM led to slightly better absolute perfor-
mance, but the relative performance for the key comparisons was

unaffected. Thus here, we equate goodness of a representation for a
recognition task with linear separability of the data with respect to that
task, and our methods are designed to measure this.

Recognition task performance of the real IT population

For each recorded IT neuron, we computed spike counts over the
time window from 100 to 200 ms following the presentation onset of
each scene. The start of this time window was based on the well-
known latency of IT neurons (Baylis and Rolls 1987). The end of the
window is well below the reaction times of the monkeys when
performing an identification task with these objects (DiCarlo and
Maunsell 2000) and is thus consistent with an integration window that
could, in principle, be used by downstream neurons to support
recognition. Previous work has shown that although the length of this
window can have small quantitative effects on performance, the
ability of the IT population to support categorization and identification
tasks using different portions of this window is qualitatively similar
(Hung et al. 2005).

In the “position-invariant task,” three binary linear classifiers (pre-
ceding text) were trained to report if their particular object (e.g.,
“star”) was present or not in any position (i.e., 1 classifier for each of
the 3 objects). The reported performance in the recognition task was
the average performance across all three classifiers (Fig. 1B). In the
“position-specific task,” a binary classifier was trained to report if a
particular object was present or not at a particular position (e.g., “star
in the top position”). A total of nine such classifiers were built (3
objects � 3 positions), and the reported performance in the task was
the average performance across all nine classifiers (Fig. 1B). Since
each classifier was binary, chance performance for each was 50%.

The performance of each binary classifier was determined using
leave-one-out cross-validation. For each question (e.g., of the sorts in
Fig. 1A), the classifier performance was evaluated as following: spike
counts of individual neurons to a given scene were randomly drawn
(without replacement) from the recorded set of presentations (trials)
and were used to assemble a “single-trial” population response vector
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FIG. 1. A: visual recognition tasks. Three objects (star, triangle, cross) were shown at three possible positions (�2, 0, and �2° relative to the fovea) either
in isolation or in combinations of pairs or triplets. Using the inferior temporal cortex (IT) population response data to each visual scene, linear discriminant
classifiers were used to measure how well the population had solved 2 different visual recognition tasks. One task required the linear discriminants to classify
object identity irrespective of its position (position-invariant task). In the particular example illustrated, the classifier was asked to classify the presence of a star
(report yes to all visual displays that contain a star regardless of the star’s position). In the other task, the classifier had to report object identity at a particular
position (position-specific task). In the example illustrated, the classifier had to report yes only to the visual scenes in which the star was present in the top position
while disregarding other displays (even those in which the star was present in another position). B: classification performance for a real IT population and a
simulated V1 population on the position-invariant and -specific tasks. All performance was averaged performance using “leave-one-out” cross validation
procedure (see details in METHODS).
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for that scene. Any scene presentations from one neuron could “go
with” any particular scene presentation from another neuron. The final
data set was obtained by repeating this procedure 10 times for each
scene, yielding a labeled M � N matrix, where N is the number of
neurons and M is the number of trials (10) times the number of visual
scenes (33) that were presented (i.e., M � 330). Once the response
matrix was created, we carried out classification (training and testing)
on that matrix. Specifically, in every round of classification, we first
left out one population responses vector (1 row in the response matrix)
for testing, the remaining trials were used to train the classifier. We
repeat this procedure 330 times such that every trial (row) in the
response matrix was tested once. Finally, the overall mean classifier
performance and its standard error (obtained by bootstrap re-sam-
pling) across all questions for a task were reported in Fig. 1B.

Recognition task performance of hypothetical
neuronal populations

To explore hypothetical single-unit response properties for support-
ing the two recognition tasks, we created an abstract stimulus space
that captured the essence of the recognition tasks and allowed us to
succinctly specify the responses of IT neurons in accordance with
previous empirical results and variations of those results. Specifically,
the abstract stimulus space has two continuous dimensions that
formed the two axes of the space (object identity, s � [�1.0, 1.0];
object position, p � [�1.0, 1.0]) and provides a graphical perspective
on the nature of the recognition tasks (Fig. 2A). In this space, a single
point represents a visual “scene” containing a single object. To
establish a recognition task that is comparable to what was tested in
the real IT population (preceding text), three objects (A–C) and three
positions (X–Z) were selected, indicated by the nine square regions
evenly placed as a 3 � 3 grid in this stimulus space (see Fig. 2A, left).
We then generated a large class of hypothetical neuronal populations

to differently represent this stimulus space (see following text for
detail), such that we could evaluate and compare them in the exact
same recognition task with the goal of separating out the essential
single-neuron ingredients of a “good” representation.

To determine the performance of a hypothetical population on a
given recognition task, the following four steps were carried out in
each simulation “run”: 1) construct a population with particular
single-unit parameters (our key independent variables), 2) simulate
the population responses (i.e., the vectors x, Eq. 1) to a set of labeled
stimulus scenes, 3) use these responses to build classifiers for the
recognition task (i.e., find w and b, Eq. 1), and 4) test the performance
of those classifiers on the recognition task using an independent set of
stimulus scenes.

Because of variability in each simulated population and its re-
sponses (described in the following text) as well as variability in the
exact test stimuli, performance was reported as the mean and SD of
�15 such runs (in practice, variation in performance across runs was
almost entirely the result of variability in the make-up of each
population). Given a recognition task, the key manipulation was step
1—the selection of single unit properties to construct a population.
The details of steps 2–4 are described next; the details of step 1 are
specific to the different types of population we simulated (IT, V1,
“abstract”) and are described at the end of METHODS.

For the position-invariant task, we built three binary classifiers (1
for each of the 3 objects; A/not-A, B/not-B, C/not-C). Correct per-
formance with each visual scene required that all three classifiers were
correct, regardless of how many objects were present. For example, if
the scene consisted of only object A, the A/not-A classifier must
report yes, and the B/not-B and C/not-C classifiers must report no,
regardless of the object A’s position. For the position-specific task, we
built three binary classifiers, one for each of the three objects at a
given position (e.g., A/not-A at position X, B/not-B at position X,
C/not-C at position X). If the scene did not contain any object at
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FIG. 2. A schematic drawing of the simulation design and tasks. A: the 2 recognition tasks that each simulated population was asked to solve. The tasks are
analogous to those tested for the real IT population (cf. Fig. 1A). On the left, the “2-dimensional (2D) stimulus space” is displayed: the y axis shows a dimension
of object shape (identity) and the x axis shows a dimension of retinal position, and a point in the space corresponds to the presence of a single visual object at
some position (in a scene). One example question for each task is illustrated by a black rectangular region. For these questions, visual scenes that contain a point
within the black region should be reported as yes. To approximate the 3 objects and 3 positions used during the collection of the real IT data (Fig. 1A), all scenes
were drawn to contain points only within the 9 dotted squares regions (objects A–C; positions X–Z). The tasks are re-displayed on the right in the same format
as Fig. 1A. B: the response profile of an example simulated IT unit in the 2D stimulus space. C: an example simulated IT population (i.e., a set of simulated units
like that in B but with randomly chosen center positions, see METHODS for details). Each colored circle indicates 1 unit. The color indicates the strength of spiking
response.
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position X, all three classifiers must report no. For each classification
task, the chance performance was established from “shuffle” runs, in
which we tested the classifiers after having randomly shuffled the
labeling of the training data. We ran a corresponding shuffle run for
all the simulation runs and we plotted shuffle performance as the
average of these runs.

In our simulations, we assessed the performance in recognition tasks
with and without the presence of clutter. That is, we considered both the
simple case in which all scenes contained only a single object, and the
more natural case in which some scenes contained more than one object.
Specifically, for the simulations “without clutter,” the labeled training
data were 3,000 single-object scenes (3,000 points randomly selected
from within the 9 square regions of the 2-dimensional stimulus space, see
Fig. 2A) and the test data were 300 single-object scenes randomly
selected in the same manner. For the simulations with clutter, the labeled
training data were a mixture of 1,000 single-object scenes, 1,000 two-
object scenes, and 1,000 three-object scenes (we ensured that no 2 objects
occupied a single position), and the test data were a mixture of 100
single-object scenes, 100 two-object scenes, and 100 three-object scenes
randomly selected in the same manner.

In summary, the testing of each hypothetical population on each
recognition task (position-invariant task or position-specific task)
consisted of �15 simulation runs. For each run, a new population of
neurons was randomly sampled from a prescribed distribution of single-
unit response properties (details of these are described in the following
text). A set of classifiers was then trained and tested on the recognition
tasks (e.g., Fig. 2A). All performance was reported as the mean and SD
of the 15 runs.

Note that here we are simply interested in investigating how well a
representation can support the recognition tasks free of the limitations
from the classifier training (e.g., learning from sparse training data).
Therefore we trained the classifiers using all the position and clutter
conditions (including the conditions the classifier would be tested on
later) and asked how well a representation could possibly support a
task given all the benefits of experience. This approach sets an upper
bound on the goodness of a representation but does not address how
well a representation allows the classifier to generalize outside the
realm of its experience (see DISCUSSION).

Simulating hypothetical neuronal populations

Each hypothetical population consisted of N single “neurons” (N
was varied for some simulations, see RESULTS) where we specified
each neuron’s response (R) to the visual scene (v) using a response
function (H), a small nonzero response baseline (c), and trial-by-trial
response variability (Noise)

R�v� � H�v� � c � Noise�v� (2)

Our main goal was to understand how differences in single-unit
response functions (H) lead to differences in population performance.
The form of H(v) for IT, V1 and “abstract” populations is given
below, as well as how it was varied (e.g., different hypothetical IT
populations). The absolute value of H(v) is not important except
insofar as it relates to the magnitude of Noise(v), which was propor-
tional to H(v) (see following text). In practice, each neuron’s response
function H(v) was scaled so that one of the single-object conditions
produced the maximum value of 1.0, and c was always set to 0.1.

A noise term was included in Eq. 2 to make the simulations roughly
consistent with noise levels seen in spiking neurons. However, our
goal was to achieve an understanding that was largely robust to the
details of the spiking noise model. Because spike counts of real
neurons are approximately Poisson (Shadlen and Newsome 1998;
Tolhurst et al. 1983), we simply assumed that the response variability
was proportional to the mean of the response. In practice, the Noise(v)
in Eq. 1 was drawn from a normal distribution with mean zero and
variance proportional to the neuron’s response. That is

Noise �v� � N	0,� � 
H�v� � c��

Thus the response, R(v), of each unit approximates the averaged
responses from a pool of m Poisson neurons, where � is smaller for
larger m. Responses were cut off at zero. For all the simulation results
presented in this paper, we set � to 0.25, such that each simulated
neuron approximated the averaged responses from four Poisson neu-
rons. Not surprisingly, the noise magnitude relative to the signal (�)
and the number of neurons (N) in a population both had strong effects
on absolute performance of simulated populations. The strategy of all
our simulations was to hold these two parameters constant at reason-
able values while varying the more interesting single-unit properties
of the population. Indeed we found that, other than floor and ceiling
effects, changing the magnitude of � and N did not change the relative
performance of any two populations (i.e., the key measure in our
study).

Simulated IT populations

We simulated IT-like neuronal responses by first defining how a
neuron responds to single objects (the condition for which the most
data exists in the literature) and then defining how the responses to
single objects are combined (“clutter rules”). We note that these IT
models are not complete models (because they do not describe the
response of each IT neuron to any possible real-world image) but are
functional quantitative descriptions of IT neurons based on existing
results (see DISCUSSION).

The response to single objects was modeled using a two-dimen-
sional (2D) Gaussian centered somewhere in the 2D stimulus space
(Fig. 2B), and we assumed independent tuning for shape and position.
Although we assumed Gaussian tuning, our main results were quali-
tatively robust to this assumption (e.g., see Fig. 5). Thus each
simulated neuron’s response function (H) to single objects [single
points in the 2D-stimulus space (s,p)] was

H�v� � H�s,p� � G��s, �s� �G��p, �p�

where G is a Gaussian profile. For each simulation run, each neuron’s
parameters were drawn as follows: the Gaussian center location (�s,
�p) was randomly assigned within the stimulus space according to a
uniform distribution. �s specified the SD of a neuron’s Gaussian
tuning along the object identity axis, and we will refer to it as the
neurons’ object (shape) selectivity. In all results presented in the main
text, �s was kept constant at 0.3 (except in Fig. 5, “IT” units �s � 0.2).
�p specified the width of a neuron’s tuning along the position axis.
Therefore the position sensitivity, i.e., receptive field (RF) size, of all
individual neurons could be manipulated by varying �p. In the
reported results, each population had a single value of �p (i.e., the
position sensitivity of all neurons in each population was identical).
The tails of the Gaussian profiles were cut off at 3 SD (value �
0.011). To avoid potential edge effects, the stimulus space was
toroidal, i.e., each tuning function with a tail extending beyond one of
the edges of the stimulus space was continued into the opposite side
of the space by joining the two opposite edges of the space (see Fig.
2C). The uniform tiling of the RF centers along the position axis was
chosen for simplicity although it does not match the observed foveal
bias in the position preference of real IT neurons (Op de Beeck and
Vogels 2000). However, this departure from empirical observations
does not affect the conclusions of our study because variations in the
density of the RFs over the stimulus space would not affect the
relative classification performance of different simulated populations,
as long as the training and testing stimuli were drawn from the same
distribution for all the tested populations (as done in our simulations).

To simulate the IT responses to visual scenes containing multiple
objects, we defined four different clutter rules (CCI, LIN, AVG, DIV,
Fig. 3D) specifying how a neuron’s responses to multiple objects
could be predicted from its responses to single objects (i.e., descrip-
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tive models). These rules were implemented as follows. If objects A
and B elicited, respectively, neuronal responses Ha and Hb when
presented in isolation (note that this is a function of both the object
identity and its spatial position, defined by the Gaussian response
functions described above), then the neuron’s response to a visual
scene (v) consisted of both A and B was 1) CCI: the maximum of Ha

and Hb (i.e., complete clutter invariance); 2) LIN: the sum of Ha and
Hb (linear rule); 3) AVG: the average of Ha and Hb (average rule); and
4) DIV: the divisive normalization of Ha and Hb (divisive normaliza-
tion rule).

Divisive normalization was defined as

H �
Ha � Hb

�Ha � Hb � ��

The constant � was small (0.01), and changing it did not qualita-
tively alter the simulation results. All of these clutter rules naturally
extended to three or more objects. To ensure that the comparison
between different clutter rules was not affected by signal-to-noise
confounds, we normalized each neuron’s responses to the mean of its
responses to all the stimuli (including both the 3,000 training and the
300 testing stimuli) presented within a simulation run. Conceptually,
this normalization roughly equated populations following different
rules in terms of averaged number of spikes produced. Without such
normalization, neurons obeying to the LIN rule would be more active,
on average, than neurons obeying to the AVG rule, resulting in better
signal to noise. In practice, the normalization similarly affected the
absolute performance obtained by simulating the different clutter
rules, with only a minor impact on their relative magnitude—see, for
instance, the performance on the “position-invariant” task shown in

the inset of Fig. 3C: with normalization (shown): CCI 75%, LIN 76%,
AVG 67%, DIV 73%; without normalization: CCI 62%, LIN 62%,
AVG 53%, DIV 55%.

In sum, there were five parameters for each simulated IT neuron:
1) �s, the preferred object (the center of the Gaussian on the object
identity dimension); 2) �p, the preferred position (the center of the
Gaussian on the position axis); 3) �s, (inverse of) sensitivity to object
identity; 4) �p, position sensitivity; and 5) the clutter rule—how the
response to multiple objects was predicted from the responses to the
single objects. To isolate the effects of the two main parameters of
interest (single-unit position sensitivity, �p, and single-unit clutter
rule) while counterbalancing across the exact Gaussian center loca-
tions (�s and �p), we simulated many different populations in which
the center values of the Gaussians were randomly generated within the
stimulus space (see example in Fig. 2C). All the results presented in
the main text of the paper were obtained by averaging the perfor-
mance on visual tasks over sets of �15 such simulated population
runs, where each run in a set contained neurons with the same values
of the parameters (�p, �s, and clutter rule), but different random
Gaussian centers. To further facilitate the comparison of the effect of
different clutter rules, the same sets of randomly generated Gaussian
centers were used while the clutter rule was varied (Fig. 3, C and D).

Simulated V1 population to compare with the recorded
IT population

To compare the recorded IT population results with a meaningful
baseline (Fig. 1B), we simulated populations of V1 simple cell like
units (n � 68, matched to the IT population in the number of recorded
trials and Poisson-like noise within a 100-ms spike-count window) in
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FIG. 3. The effect of single-neuron position and clutter sensitivity on population recognition performance. A: population performance on the recognition tasks
with visual scenes containing single objects. Performance was averaged over multiple simulation runs; error bars indicate SD. - - -, the performance from shuffled
runs (i.e., chance). The performance of the invariant populations performed above chance on the position-specific task because the neurons were sensitive to
object identity and therefore conveyed some information about this conjoint identity and position task. B: example populations illustrating different amount of
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different objects. The shape selectivity of all neurons was the same (i.e., same �s). C: population performance on visual scenes containing multiple objects.
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response to the same set of visual scenes that were presented to the
animals during IT recording (e.g., 450 � 150 pixels image containing
“stars” and “triangles”). We simulated each V1 unit as a 2D Gabor
operator on the images, qualitatively consistent with current empirical
results (DeAngelis et al. 1993; Jones and Palmer 1987), and the
response of each V1 neuron to a visual scene was the thresholded dot
product of its Gabor function applied to the scene. To synthesize a V1
population, we randomly draw each V1 unit’s receptive field position,
size (20 � 20  80 � 80 pixels), orientation (0 180°), spatial
frequency (0.050.20 cycle/pixel), and phase (0 180°) from uni-
form distributions. A different set of V1 units (new random draws)
were chosen for each simulation run, and the performance we report
in Fig. 1B was the average performance over �15 such runs (15
different V1 populations). Although the random sampling of the V1
units’ parameters may introduce variability in the V1 classification
performance, this variability was small relative to the absolute per-
formance (error bars in Fig. 1B show SD).

Simulated V1 population to compare with simulated
IT population

To compare the simulated IT populations with a meaningful base-
line (Figs. 5 and 6), we again simulated populations of V1 units. In
this case, we simulated each V1 unit’s 2D response function spanning
a discretized stimulus space (n objects � n positions) that was roughly
matched to the continuous stimulus space we defined for the simulated
IT population. We used images containing 64 2D white silhouettes
shapes (Zoccolan et al. 2005) on a constant gray background, and we
computed each unit’s responses to images of each white shape at 64
azimuth positions (64 objects � 64 positions � a total of 4,096
images). On average, the objects were approximately three times the
size of the V1 receptive fields in diameter. Our main conclusion was
not dependent on the exact parameterization of the stimulus space or
the shape of the V1 response functions in this stimulus space. This
was verified by simulating the V1 response functions on 64 natural
objects on gray backgrounds, yielding similar classification perfor-
mance.

Simulated abstract populations

We explored classes of hypothetical neuronal populations consist-
ing of neurons with more abstract response functions in the 2D
stimulus space than the 2D Gaussians used to model IT units (a
diverse range of response function shapes was used). Some of these
populations were built such that the rank-order object selectivity of
individual neurons was preserved across position changes and clutter
conditions, while other populations, by construction, lacked this
property [Fig. 5; (i)P � (v)P, (i)C � (iv)C)]. The populations with
response functions that preserved the rank-order selectivity across the
position axis were constructed as following (see Fig. 5C, right): i)p,
position-invariant response and narrow Gaussian sensitivity along the
identity axis; ii)p, wide Gaussian sensitivity along the position axis
and narrow Gaussian sensitivity along the identity axis; iii)p position-
invariant response and sinusoidal sensitivity along the identity axis;
iv)p multi-lobed Gaussian sensitivity along both the position and
identity axis; v)p random tuning profile. The random 2D response
function was created by multiplying two independently drawn, ran-
dom 1D response functions (smoothed), specifying the selectivity
profile along each of the two stimulus axes.

By construction, these response functions maintained their rank-
order object preferences across position changes (Fig. 5C, right), so
that the response modulations resulting from position changes did not
impact the object preference rank order. To simulate their counter
parts, (similar response functions but with rank order not preserved,
Fig. 5C, left), response functions (i)p  (iv)p above were simply
rotated in the stimulus space for an arbitrary angle (�30  60°). The
rotations created diagonals in the response matrix over the stimulus

space, thus the neurons’ rank-order object preference was no longer
preserved under position variations. The random response functions
with nonpreserved rank-order object preference, (v)p, were created by
smoothing matrices of random numbers.

When multiple objects were present in the visual scene, the stim-
ulus space became n-dimensional representing each object’s position
and identity (n � 2 times the number of objects). For the purpose of
simplicity, in Figs. 5 and 6, we only considered visual scenes with two
objects and object position was ignored. Therefore in this reduced
formulation, the stimulus space was only 2D, representing the identity
of the two objects (such a simplification does not limit the generality
of our conclusions). Within the stimulus space, response functions
produced by all the systematic clutter rules (CCI, LIN, AVG, and
DIV) maintained their rank-order object preference across clutter
conditions. That is, if a neuron preferred object A over B, the neuron
would maintain that preference when another object X was added (i.e.,
AX � BX), regardless of the identity of the distractor X, (e.g., see
AVG in Fig. 5D). To contrast, we simulated four other response
functions (Fig. 5, (i)C–(iv)C) that did not maintain this rank-order
object preference. That is, adding specific X reversed the neuron’s
response preference for A over B (i.e., AX 	 BX in certain cases).
The details of these other response functions are not of critical
importance other than the fact that they exhibited distinct shapes and
covered a range of single-neuron clutter sensitivity. In practice, they
were generated as following: i)c we first established a CCI response
function inside the 2D stimulus space (object-object). Each neuron
had a Gaussian tuning along the object identity axis, and its conjoint
tuning in the object-object stimulus space was established by taking
the maximum between two Gaussian tunings along the individual
stimulus axes. The final response function had the shape of a “cross”
centered on the preferred object of the neuron paired with itself. Once
the CCI response function was establish, we then rotated (�30  60°)
the response function inside the stimulus space to create diagonals
(such as what was done for (i)P–(iv)P). ii)c rotated version of LIN
response function; iii)c sum of two different CCI response functions
with their centers some distance apart within the stimulus space (�0.3
of the width of the stimulus space); iv)c we first established a CCI
response function. We then added a separate Gaussian lobe, of
variable width, to the CCI response function.

Single-neuron metrics: position sensitivity, clutter sensitivity,
and rank order

Relating the goodness of a population (i.e., classifier performance)
to single-neuron properties, we contrasted different populations by
three different single-neuron metrics: position sensitivity, clutter sen-
sitivity, and rank-order of object selectivity.

To quantify different populations’ position sensitivity (see Fig. 6A),
we carried out a position sensitivity “experiment” on each neuron. We
first found its most preferred object and preferred position by finding
the peak of its 2D response function. Using this preferred object, we
measured the neuron’s responses to 1D changes in object position, and
the magnitude of the neuron’s position sensitivity was quantified as
the area under this 1D response function (this is equivalent to mapping
a neuron’s receptive field with its most preferred object, analogous to
standard measurements of position tolerance) (Zoccolan et al. 2007).
This position sensitivity index was normalized so it ranged from 0 to
1 for each neuron. The position sensitivity of a population was the
average of all the individual neurons’ position sensitivity indices.

To compute the magnitude of each population’s clutter sensitivity
(see Fig. 6B), we first found each neuron’s peak along the diagonal of
the stimulus space (i.e., most preferred object paired with itself), its
clutter sensitivity index was then computed as the averaged reduction
in response from this maximum response when this preferred object
was paired with other objects. The clutter sensitivity index was
normalized so it ranged from 0 to 1, (analogous to standard measure-
ments of clutter tolerance; Zoccolan et al. 2007).
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To quantify how well a population’s neurons maintained their
rank-order object preference in the face of transformations, we em-
ployed commonly used separability index (Brincat and Connor 2004;
Janssen et al. 2008), (see Fig. 4, B and D). The separability index
computes the correlation between a neuron’s actual responses and the
predicted responses assuming independent tunings along the object
and transformation axis (i.e., a neuron’s response is characterized by
the product of its tuning along the object and transformation axis). The
separability index ranged from �1 to 1 and was computed for the
recorded IT population and the simulated V1 population as following:
for position transformations, a neuron’s responses were assembled in
a 3 � 3 response matrix, M, (there were 3 object presented at 3
positions in the experiment). For clutter transformation, the response
matrix M was 2 � 6 (2 objects under 6 clutter conditions, e.g., Fig.
4C). The predicted response was computed by first taking the singular
value decomposition of M (M � USV�), then reconstructing the
predicted response from the first principle component (i.e., product of
the first columns of U and V). To avoid bias, each neuron’s data were
split in half: one half was used to generate the predicted response, the
other half used to compute the correlation with the prediction (i.e., the
separability index). Only the selective neurons were included in this
analysis (Fig. 4): to be deemed selective across position, neurons need
to pass an one-way ANOVA test across object identity (P � 0.05; 32
neurons in total); to be deemed selective across clutter conditions,
neurons need to pass an one-way ANVOA test across clutter condi-
tions (P � 0.05; 25 neurons). For clutter, each neuron could contribute
multiple separability index values depending on the precise configu-
ration of the stimulus display (e.g., of the sorts shown in Fig. 4C,
bottom). In total, there were 63 cases from the IT population and 68
cases from the V1 population in Fig. 4D.

R E S U L T S

The first goal of this study was to examine the ability of a
recorded IT neuronal population to support object identification
tasks in the face of object position variation and clutter. These two
types of image variation are intimately related in that, when
images contain multiple objects (cluttered images), those ob-
jects invariably occupy different retinal positions. Thus a
neuronal representation that signals object identity must over-
come both types of variation simultaneously. The second,
related goal was to examine simulated IT populations with
different single-unit response properties, to understand the
relationship between single-unit IT response properties and
population performance in those tasks. To accomplish these
two goals, we constructed visual scenes that are simpler than
those typically encountered in the real world but that engage
the computational crux of object recognition—object identifi-
cation in the face of image variation. Specifically, we tested the
populations’ ability to support two types of tasks: identify
objects irrespective of their position and the presence of other
objects (position-invariant recognition) and identify objects at
specific positions irrespective of the presence of other objects
(position-specific recognition; see Fig. 1A).

We used linear classifiers to test the capability of the
recorded and simulated populations to support the two recog-
nition tasks, and we took the classifiers’ performance as a
measure of the goodness of the representations provided by the
populations. Successful performance on both tasks means that
the population representation can support clutter invariant rec-
ognition and it can simultaneously represent multiple objects (at
least up to the number of objects tested; see DISCUSSION). The
justification for such an approach and the implementation
details of the classifiers are provided in METHODS.

Primate IT neuronal population

To test the basic ability of primate IT to directly support
position- and clutter-invariant object recognition (identifica-
tion), we recorded the responses of a population of monkey IT
neurons (n � 68) to a set of 33 simple visual scenes. Each
scene was constructed from three possible objects (star, trian-
gle, cross) and three possible retinal positions (�2, 0, �2° to
the center of gaze; see METHODS for details). Some scenes
contained only single objects in isolation, while others con-
tained those same objects in the presence of other objects (2 or
3 objects in a scene, Fig. 1A; see METHODS).

TASK 1: POSITION-INVARIANT IDENTIFICATION: WHAT OBJECT(S) ARE

IN THE SCENE? We began our analysis of these IT population
data by examining the simple situation in which each presented
visual scene contained just one of the three possible objects in
any one of the three possible retinal positions (9 of the 33
scenes). By restricting to these scenes only, we could ask how
well the IT population could support position-invariant object
identification without visual clutter. Specifically, for correct
performance, each linear classifier had to respond only when
its preferred object was present regardless of the object’s
position (see METHODS). Consistent with previous work (Hung
et al. 2005), we found that even a small IT population (n � 68)
can support this task well above chance (Fig. 1B, mean 69.1%,
P �� 10�6, chance � 50%), even though most neurons are
highly sensitivity to changes in object position (median re-
sponse reduction of 35.9% going from preferred object in the
best position to worst position, within 2° of fovea). Moreover,
we found no systematic relationship between the magnitude of
a neuron’s position sensitivity and its contributions to task
performance (i.e., weight in the classifier; correlation � 0.19,
P � 0.3).

We next considered a more complex situation in which we
asked if the IT population could directly support object iden-
tification even in the face of limited clutter (other objects in the
scene; see Fig. 1A, top). The task of the linear classifiers was
the same as above, except that we now included scenes in
which multiple objects were present (2 or 3 objects, 33 scenes
total, see METHODS). The presence of such additional objects
often strongly suppresses the responses of individual IT neu-
rons (Chelazzi et al. 1998; Miller et al. 1993; Missal et al.
1999; Rolls and Tovee 1995; Rolls et al. 2003; Sato 1989;
Sheinberg and Logothetis 2001; Zoccolan et al. 2005, 2007),
and for this set of IT neurons, the median reduction in response
to the most preferred object was 36.4%. Thus we asked
whether the IT population performance would be similarly
affected in this task. However, we found performance well
above chance (Fig. 1B, mean: 68.9%, P �� 10�6), and only
slightly degraded from that observed with single objects (the
performance in the two cases was not significantly different,
P � 0.59, 2-tailed t-test). This shows that the ability of the IT
population to support position-invariant object identification
is largely unaffected by the presence of limited visual
clutter, even when individual IT neuronal responses are
strongly affected by that clutter. We found no systematic
relationship between the magnitude of a neuron’s clutter
sensitivity and its contributions to task performance (corre-
lation � 0.19, P � 0.3).
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TASK 2: POSITION-SPECIFIC IDENTIFICATION: WHAT OBJECT IS LO-

CATED AT EACH POSITION? We have shown above that the IT
population can directly report object identities regardless of object
positions, even when the scene contains multiple objects (at least
under the limited conditions tested here, see DISCUSSION). This
result implies that the IT population can simultaneously rep-
resent the identity of multiple objects. However, to represent
multiple objects unambiguously, the population should directly
represent not only “what” objects are present (i.e., task 1 in the
preceding text), but also “where” they are. Although this
question touches on deep theoretical issues and possibilities
about how such information is “bound” together (Riesenhuber
and Poggio 1999; Roudi and Treves 2008; Treisman 1999), we
here ask a very basic question: can the IT population report
object identity at specific positions? To do this, we used the
same set of visual scenes (containing both single and multiple
objects) and neuronal population response data, and we built
linear discriminant classifiers to perform the same object iden-
tification task at each of the three possible positions (see Fig.
1A, bottom). At each of these positions, we found that such
classifiers performed even better than the position-invariant
classifiers (mean: 73.6%, Fig. 1B). This means that down-
stream neurons could, in parallel, reliably report the identity
and position of each object in the image from the IT population
response (at least up to the limited clutter conditions tested
here).

It is well known that population size can strongly influence
the reliability of signals and thus increase the total amount of
information that is conveyed by neuronal representations. It is
also known that cortical neurons can integrate information over
a number of synaptic inputs (10,000) (Braitenberg 1978) that
is much larger than the number of IT neurons that can be
reasonably be recorded with current techniques. To overcome
this limitation, we used the linear discriminant approach to
estimate how the amount of information conveyed by an IT
neuronal population would scale with the number of units in
the population. To this aim, we synthesized larger populations
of Poisson-spiking neurons from the response profiles of the
measured IT population. This procedure does not assume any
stimulus selectivity that was not already in the population
(because all synthesized neurons were copies of 1 of the
original 68 neurons), but it does allow for moderate amounts of
pooling to overcome the high trial-to-trial variability of cortical
neurons (Shadlen and Newsome 1998), thus increasing the
information that can be extracted from the IT population on a
single trial. We found that the performance on both recognition
tasks scaled at a very similar rate as the population size grew
(Supplemental Fig. S11). Notably, the absolute performance
saturated at very high levels for population sizes that were
similar to those postulated to support visual discrimination
tasks in other visual areas ((Shadlen et al. 1996); �80% correct
for a population of several hundred neurons. Here, “position-
specific” task: �85%; “position-invariant” task: �80%, n �
680).

Overall these data show that although individual IT neuronal
responses are often highly sensitive to object position (DiCarlo
and Maunsell 2003; Op de Beeck and Vogels 2000; Zoccolan
et al. 2007) and to the presence of visual clutter (Chelazzi et al.
1998; Miller et al. 1993; Missal et al. 1999; Rolls and Tovee

1995;Rolls et al. 2003; Sato 1989; Sheinberg and Logothetis
2001; Zoccolan et al. 2005, 2007), the IT population was able
to overcome the inadequacy of single IT neurons—object
identity can be extracted invariant of retinal position and the
presence of clutter (up to a certain degree, Fig. 1B). Notably,
the performance of the IT population on all of these tasks is
greater than that expected of a comparably sized population of
V1 neurons (simple cell simulation; see METHODS; Fig. 1B; this
is not simply explained by smaller V1 RF size or lack of
coverage, see Figs. 5 and 6C). Thus motivated by these
findings with the recorded IT population, we sought to under-
stand what single-neuron response properties are most impor-
tant in providing a population representation that robustly
supports position- and clutter-invariant object identification
(what; Fig. 1B, 1st and 2nd bar), yet can also support position-
specific object identification (where; Fig. 1B, 3rd bar).

Simulated “IT” neuronal populations

While our empirical IT data provide a basic “proof of
existence” that position- and clutter-sensitive neurons can sup-
port invariant recognition, they provide little insight into what
single unit properties are important to this ability. To explore
this issue further, we simulated artificial populations of neu-
rons with different position and clutter sensitivity, as a tool to
ask what kind of single-unit response properties are more or
less important for a population of such neurons to support
position- and clutter-invariant object recognition.

To do this, we created an abstract 2D stimulus space with
object identity (e.g., shape) on one axis and retinal position
(e.g., azimuth) on the other axis. A neuron’s response to a
single object (i.e., a point in the 2D stimulus space) was
determined by a 2D Gaussian tuning function over the
stimulus space (Fig. 2B; see METHODS). Its center specified the
neuron’s preferred stimulus (i.e., the preferred shape and po-
sition), its SD along the shape axis (�s) controlled it selectivity
for object shape (i.e., a lower �s results in a sharper shape
tuning), and its SD along the position axis (�p) controlled its
sensitivity to changes in object position (i.e., the size of its
receptive field). In the presence of multiple objects, we con-
structed different clutter rules specifying how a neuron’s re-
sponse to multiple objects depended on the responses to single
objects. Briefly, the response to multiple objects was defined
as: the maximum (CCI), the sum (LIN), the average (AVG), or
the divisive normalization (DIV) of the neuron’s responses to
the constituent objects in isolation (Fig. 3D). We also included
a negative control where the neuron’s response in clutter was
not systematically related to the responses to the constituent
objects (RAND). These different clutter rules specified differ-
ent amounts of individual-neuron clutter sensitivity. The main
results of the paper are not limited to these initial assumptions,
as we also explored other (more general) types of representa-
tions (see Fig. 5).

The aim of these simulations was to create artificial neuronal
populations with different kinds of single-unit response functions
(described in the following text). Linear classifiers were then used
to assess the goodness of these populations in supporting position-
and clutter invariant recognition. This allowed us to evaluate the
relative pros and cons of different single-unit response properties
in the context of a population code. Note that this framework is
agnostic about: the number of shape dimensions, what aspect(s) of1 The online version of this article contains supplemental data.
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visual shape are coded along one of those shape dimensions, and
what exact visual stimuli real IT neurons are tuned for. Instead, it
is simply a tool to facilitate thinking about the best way to
represent information about object identity and position using
populations of neurons.

Effect of varying the position and clutter sensitivity of
individual neurons

Similarly to what was done for the recorded IT population,
we examined how well a simulated population can identify
objects in visual scenes containing multiple objects. In such a
context, we varied the individual neuronal position and clutter
sensitivity and examined their effects on a population’s ability
to support the recognition tasks (Fig. 3). To do this, we
synthesized neuronal populations in which all single neurons in
each population had the same position sensitivity (�p) and
clutter sensitivity (clutter rule), but across a series of these
populations, we systematically varied the single-neuron po-
sition (Fig. 3B) and clutter sensitivity (Fig. 3D).

Figure 3A shows how the performance in the recognition
tasks depends on the position sensitivity of the individual
neurons. In fact, varying individual neuronal position sensitiv-
ity over a wide range produced little effect on the populations’
ability to support position-invariant task (Fig. 3A, dashed line).
At the same time, only populations of position sensitive neu-
rons conveyed the necessary position information to support
the position-specific task (Fig. 3A, solid line). Trivially, the
population performance on both recognition tasks rapidly de-
creased if the single neurons were made too position sensitive
due to the populations’ loss of coverage of the stimulus space
(Fig. 3A, small �p). So far, these results are only a confirmation
of the rather intuitive expectation that one can take position-
sensitive neurons and combine them in a population to support
position-invariant task. However, with these same methods and
intuition in hand, we next go on to show that the same
conclusion on single-neuron position sensitivity holds when
multiple objects (clutter) are present in the scene.

Figure 3C shows the classifier performance in the position-
invariant and -specific task in the presence of multiple objects
when the simulated neuronal populations followed different
clutter rules (stimuli consisted of single, double, and triplet
objects). Surprisingly, populations of nonclutter-invariant neu-
rons (LIN, AVG, DIV) performed comparably well to popu-
lations of complete-clutter-invariant neurons (CCI; Fig. 3C,
insets). Performance was substantially reduced only when
neurons followed the random clutter rule (RAND; black bars in
the insets) in which the responses to multiple objects were not
predictable from the responses to single objects. In fact, the
choice of the clutter rule had relatively little effect on popula-
tion performance even though individual neurons behaved very
differently under different rules (Fig. 3D). Furthermore, the
different populations conveyed object identity information in
similar format, (correlations among linear classifier weights
within clutter rule: 0.988; across clutter rule: 0.975; Table 1).
Thus for a downstream observer, the amount of individual-
neuron clutter sensitivity did not matter, to the extent that the
object identity information can be read out in nearly identical
fashion (albeit with different classifier thresholds).

Together, these results show that single-neuron properties
previously assumed to be important (i.e., response magnitude

that is largely maintained across transformations) only mini-
mally impact the goodness of the representation (but see
DISCUSSION for possible limitations of such a conclusion). Fur-
thermore, in the case of position, the high sensitivity often
observed in individual IT neurons should be viewed as a
desirable property for a representation capable of directly
supporting a range of recognition tasks (also see DiCarlo and
Cox 2007).

What response property of individual it neurons enables
populations of such neurons to support object recognition?

If the amount of position and clutter sensitivity only has a
small impact on a representation’s ability to support invariant
recognition tasks, a fundamental question then arises: what key
single-neuron property has the visual system achieved in IT
that is not present in early visual areas (e.g., V1)? Or to put it
another way, given that V1 neurons have high position
sensitivity (i.e., small receptive fields), which is a poten-
tially useful property (as shown in Fig. 3, A and C), what
property do individual V1 neurons lack that makes the V1
population inferior to the IT population for object recogni-
tion (Fig. 1)?

A distinguishing hallmark of IT is that neurons’ preference
among different objects is often preserved across image trans-
formations (at least with respect to position and size) (Brincat
and Connor 2004; Ito et al. 1995; Schwartz et al. 1983) despite
variations in the receptive field sizes. This was true in our
recorded IT population as well. An example IT neuron’s object
preference across position is shown in Fig. 4A. Conversely,
when we simulated V1 neuronal responses (spatially local
Gabor operators on the same visual scenes, see METHODS), we
found that the rank-order of their object selectivity was not
preserved, because of the interaction of object parts with the
neurons’ receptive fields (e.g., Fig. 4A). To quantify the pres-
ervation of the rank-order object preference across the popu-
lation, we used a standard separability metric (see METHODS)
(Brincat and Connor 2004; Janssen et al. 2008). On average,
we found that the IT neurons had much higher separability
from the simulated V1 units (Fig. 4B, P � 10�14, 2-tailed
t-test). More interestingly, we also noted that neuronal re-
sponses under clutter could be interpreted in the same frame-
work. When we plotted the IT neurons’ responses to different
objects under the same clutter conditions (i.e., when paired
with the same distractor at the same position), most single IT
neurons showed preservation of their object preference rank
order (see example in Fig. 4C) and the IT population showed

TABLE 1. Correlations

CCI LIN AVG DIV

CCI 0.99 0.98 0.97 0.98
LIN 0.99 0.97 0.98
AVG 0.98 0.97
DIV 0.99

Correlations between the discriminant weights used to read-out populations
implementing different clutter rules. The diagonal in the table is the correlation
of the weights vectors for the same populations obtained across different
simulation runs, thus the values on the diagonal is an estimate of the upper-
bound on the correlation values given the noise. CCI, complete clutter
invariant; LIN, linear; AVG, average; DIV, divisive normalization.
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much more separable responses than the simulated V1 popu-
lation (Fig. 4D, P � 10�22, 2-tailed t-test).

The preservation of the rank-order object selectivity over
position changes has been previously suggested to be important
for achieving a position-invariant object representation (Gross
et al. 1993; Logothetis and Sheinberg 1996; Vogels and Orban
1996), but, to our knowledge, has not been systematically
evaluated and demonstrated. Furthermore, the notion that pre-
serving the rank-order of object selectivity in clutter can result
in a clutter-invariant population representation has never been
proposed. Instead it is commonly assumed that attentional
control is necessary to overcome clutter given the clutter
sensitivity of single IT neurons (Desimone and Duncan 1995;
Reynolds and Chelazzi 2004; Serre et al. 2007). Is preservation
of the rank-order selectivity in clutter important to achieve a
clutter-invariant representation and can such a property over-
come the coding issues associated with the presence of clutter?
To validate these intuitions and clarify the relationship between
single neuron response properties and goodness of a population
representation (e.g., Figs. 1B and 4), we directly examined the
importance of rank-order preservation as a key single-neuron
response property.

Effect of varying the preservation of the rank-order
selectivity of individual neurons

We simulated many different neuronal populations consist-
ing of neurons with abstract response functions (i.e., unlike V1
and IT, generated without regard for experimental data). We
chose these abstract response functions such that some pre-
served the object rank-order across transformations while oth-
ers did not (e.g., Fig. 5C). In addition, their response magnitude
spanned a wide range of sensitivity to position and clutter
(measured by appropriate indices, see METHODS). This allowed
us to assess what single-unit response property is a good
predictor of the population performance on the invariant rec-
ognition tasks. To minimize other confounding differences

between these response functions, all of the populations were
matched in terms of number of neurons and approximate
coverage of the stimulus space.

We first concentrated on the position aspect of the recogni-
tion task by only using visual scenes of single objects. As
shown in Fig. 5B, we found that populations of neurons that
preserved the rank-order of their object preference across
positions (see example in Fig. 5A, right) performed much
better on the position invariant recognition task than popula-
tions of neurons that did not (see example in Fig. 5A, left). We
also found that some populations of neurons, the response
functions of which were not Gaussian but nevertheless pre-
served the rank-order of object preference across positions [e.g.,
Fig. 5C, plot labeled (iii)P], performed nearly as well as the
population of neurons with Gaussian tuning functions (Fig. 5C,
plot labeled IT). This implies that, at a purely computational level
of information representation, Gaussian response functions are not
required to support position-invariant recognition.

Next, we showed how a similar rationale could explain the
high performance achieved by all the systematic clutter rules
when multiple objects were present (cf. Fig. 3C). In fact, the
systematic clutter rules we simulated (Fig. 3D) all produced
rank-order preservation of object preference across clutter
conditions (only 1 of those rules—CCI—also yielded clutter
invariance). Except for the RAND rule, each neuron main-
tained its relative object preference (rank-order) even though
its absolute firing rate could change dramatically in the face of
clutter (an example neuron following the AVG rule is shown in
Fig. 5D, right). To confirm that this preservation of rank-order
selectivity across clutter conditions underlies the high classifi-
cation performance, we simulated neuronal populations that
did not maintain the rank-order of their object preference in
clutter (e.g., Fig. 5D, left). Indeed the performance on the
clutter-invariant recognition task was much lower for the latter
populations (compare gray to black bars in Fig. 5E). This
directly demonstrated that to achieve clutter-invariant recogni-
tion, the degree of clutter sensitivity of individual neuronal
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responses is not critical. Instead it is more important that
neurons maintain the rank order of their object selectivity in the
face of clutter.

At a more quantitative level, the preservation of the rank-
order selectivity at the single-unit level was a good predictor of
the population performance across all the populations we
simulated, while standard measures of single neuron sensitivity
to transformations were not (Fig. 6A). We also tested whether
strict separability of tuning along the identity and position
dimensions yielded higher recognition performance as com-
pared with the less strict requirement of preserving the rank-
order object selectivity. Tuning in a multidimensional stimulus
space is separable if it is the product of the tuning along
individual stimulus dimensions, and there are reasons to be-
lieve that separable tuning curves could be mathematically
optimal for creating a representation where multiple stimulus
attributes need to be read out with linear tools (Ma et al. 2006;
Sanger 2003). We found that these two alternative coding
schemes both yielded equally high recognition performance
(Fig. 6B), but this negative result does not fully settle the issue
because the difficulty of our object recognition tests may not
have been powerful enough to distinguish among these alter-
natives. Finally, the better performance achieved by the pop-
ulations preserving the rank-order selectivity (e.g., IT vs. V1)
cannot be accounted for by the degree of coverage of the
stimulus space because coverage was approximately equated
across the tested populations. To further confirm this, we
varied the number of units in the simulated IT and V1 popu-
lations and examined their performance on the position invari-
ant task (Fig. 6C). We found that even when a high number of

units was simulated (to rule out any possible coverage differ-
ences between the V1 and IT populations), V1 performance
quickly saturated to a much lower value than IT performance,
failing to succeed in the simple invariant task asked here.

In summary, response functions that preserved the rank
order of object selectivity across position changes and clutter
led to neuronal populations that were highly robust in support-
ing invariant recognition, regardless of the specific shape of the
neuronal tuning curves or their degree of sensitivity to the
tested transformations.

D I S C U S S I O N

Most studies aimed at understanding invariant object repre-
sentation in IT have understandably concentrated on measuring
the responses of single IT neurons to preferred objects pre-
sented over transformations (e.g., addition of “distractor” ob-
jects to the image). Although perhaps at odds with colloquial
thinking about IT, that work has shown that single IT neurons’
firing rates can be quite sensitive to these identity-preserving
image changes, often much more sensitive than behavioral
recognition (Aggelopoulos and Rolls 2005; DiCarlo and Maun-
sell 2003; Op de Beeck and Vogels 2000; Tovée et al. 1994;
Zoccolan et al. 2007). To consolidate this discrepancy, it is
tempting to conclude that this sensitivity in single IT neurons
reflects inadequacies of those neurons to achieve invariance in
natural vision (where multiple objects are constantly present)
and that the visual system must engage additional mechanisms
(e.g., attention) to overcome the interference of visual clutter.
However, these explanations assume a straightforward rela-
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tionship between the response properties of individual neurons
and the behavior of populations of such neurons. The primary
goal of this study was to examine that assumption.

By gathering neuronal data from IT and “reading-out” the
population using biologically plausible mechanisms (linear clas-
sifiers), we report that intrinsic response properties of a small
population of IT neurons (i.e., earliest part of response in the
absence attention) already supports object identification while
tolerating a moderate degree of clutter. This is true even when

multiple objects and their positions must be reported. However,
this leaves open the possibility that the IT population would be
able to do even better if the individual neurons were somehow less
position- and clutter-sensitive. We tested this possibility by car-
rying out simulations that showed that low sensitivity to position
changes in individual neurons is not needed to support position-
invariant recognition, low sensitivity to clutter in individual neu-
rons is not needed to support clutter-invariant recognition, posi-
tion-sensitive neurons are advantageous because they allow the
unambiguous representation of object position, and preservation
of the rank-order of object selectivity is a single neuron response
property that is highly predictive of good population recognition
performance (see summary in Fig. 7).

At a first level, our results are a reminder that even simple
rate codes in populations of neurons can convey information
that is not readily apparent from the responses of single-units
(Kohn and Movshon 2004; Riesenhuber and Poggio 1999). For
example, a strong interpretation of what and where pathways
creates a so called “binding problem” (Treisman 1999) in that
IT is assumed to represent only object identity, and this has led
to a number of speculations as to how that the object identity
and position can be bound back together (Reynolds and Desi-
mone 1999; Riesenhuber and Poggio 1999; Shadlen and Movs-
hon 1999). However, at least with respect to the object position
and identity, direct examination of IT population responses
shows that this particular form of the binding problem does not
exist because object identity is represented jointly with object
position in IT (Fig. 1B) as previously suggested (DiCarlo and
Cox 2007; Edelman and Intrator 2003; Hung et al. 2005;
Riesenhuber and Poggio 1999; Roudi and Treves 2008; Serre
et al. 2007). At a deeper level, our results show that single-
neuron properties previously assumed to be important (i.e.,
response magnitude that is largely maintained across transfor-
mations) only minimally impact the goodness of the represen-
tation (but see following text for possible limitations to such a
conclusion) and that the sensitivity to transformations often
observed in individual IT neurons (i.e., “tolerant” IT neurons,
see Fig. 7) should not be viewed as a failure to achieve
perfection, but a desirable property for a representation capable
of directly supporting a range of recognition tasks (also see
DiCarlo and Cox 2007).

Ideal single neuron response properties?

If transformation-sensitive responses in individual neurons
are not a limiting factor in creating a population that can
support highly invariant recognition, what single-neuron prop-
erty is required? This problem is ill defined because, in general,
no individual neuron will dominate the performance of a
population (e.g., its limitations can always be compensated by
other neurons). However, if one assumes that all neurons in the
population have similar response functions but with different
preferred shapes (objects) and positions (i.e., different Gauss-
ian centers in our 2D stimulus space), we showed that popu-
lations of neurons with rank-order object preference that is
preserved across image transformations (here, position and
clutter, but this could be size, pose, etc.) form much more
powerful object representations than populations of neurons
that lack this property (Figs. 5 and 6). The potential importance
of preserving the rank-order object selectivity over preserving
the magnitude of neuronal responses (in the face of transfor-
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mations) has previously been suggested in the literature with
respect to position and size (Gross et al. 1993; Logothetis and
Sheinberg 1996; Vogels and Orban 1996). Here we provided
direct confirmation of this: by simulating abstract neuronal
response functions, we found that rank-order preservation of
object selectivity in individual neurons was a very good pre-
dictor of population performance, whereas the extent to which
neuronal response magnitude was preserved was a poor pre-
dictor (Fig. 6A). Interestingly, unlike V1 neurons, IT neurons
appear to preserve their rank-order selectivity over changes in
object position (DiCarlo and Maunsell 2003; Ito et al. 1995;
Logothetis and Sheinberg 1996; Op de Beeck and Vogels
2000; Tovée et al. 1994) even when their receptive field size is
small (DiCarlo and Maunsell 2003). This single-unit response
pattern in IT neurons has been termed selectivity tolerance
(e.g., tolerance to position), and it explains why IT populations
perform better than (e.g.) V1 populations on object recognition
tasks, even if both have small single-unit receptive fields (also
see DiCarlo and Cox 2007).

Furthermore, we also demonstrated that the same rationale
explains why single neurons following any of the systematic

clutter rules (i.e., all rules in Fig. 3, C and D, except RAND)
performed well as a population in recognition tasks under
cluttered conditions (Fig. 3C). In particular, even though each
systematic clutter rule produced different amounts of clutter
sensitivity in individual neurons (Fig. 3D), all of these rules
had a more important feature in common—they each preserved
the rank-order object preference, in the sense that each neuron
always responded more to its preferred object than nonpre-
ferred objects even in the presence of other clutter objects
(provided that these clutter objects were the same and were
present at the same positions in both cases). Again, it is not the
amount of clutter sensitivity that matters, but the preservation
of the rank-order selectivity that is guaranteed by these clutter
rules. And again, although single IT neuron responses are
strongly altered by clutter (Chelazzi et al. 1998; Miller et al.
1993; Missal et al. 1999; Rolls and Tovee 1995; Rolls et al.
2003; Sato 1989; Sheinberg and Logothetis 2001; Zoccolan
et al. 2005, 2007), the rank-order selectivity of those neurons
appears to be maintained in clutter (Zoccolan et al. 2005,
2007). Even though our neuronal data were collected at short
eccentricities (�2 to �2°), this message applies to larger
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eccentricities because the simulations are scale independent,
and IT clutter suppression has been found to be virtually
identical at short eccentricities (Zoccolan et al. 2005) and
mid-range eccentricities (i.e., 4–7° from fovea) (Chelazzi et al.
1998). Naturally, the conclusion also applies to any population
representation, the units of which behave similarly to IT
neurons in clutter, including a class of object recognition
models (Zoccolan et al. 2007) that are able to support recog-
nition of multiple objects (Serre et al. 2007). The summary
“take home” message of our work is given in graphical form in
Fig. 7.

More broadly, the response functions with preserved rank-
order selectivity performed well because this class of response
functions is well matched to the desired output function the
classifier is trying the construct (Ma et al. 2006; Poggio 1990;
Salinas 2006)—the independent read-out of object identity and
image transformations (but see also limitations in the following
text).

Limitations

An overriding theme of this paper is that task constraints
dictate ideal response functions (Salinas 2006) but not
always in an obvious way. Here we explored a range of
descriptive models of single-unit IT neuronal response func-
tions and determined which performed best at the population
level. While this approach gives insight into which response
properties are important, it does not provide guidance on
how to construct mechanistic models of such IT neurons
(i.e., models that operate directly on the visual image). In
addition, although our descriptive models of IT show how
the task constraints of object recognition imply that IT
neurons should have sensitivity to object identity that is
preserved across position and clutter, this still allows a large
number of possible descriptive models. That is, there are a
large number of response functions with rank-order pre-
served that are capable of supporting the recognition tasks
(e.g., Fig. 5C). Other constraints such as wiring limitations
(i.e., number of afferent connection per neuron allowed) and
the number of neurons in a population will further constrain
the ideal set of descriptive IT models. Further simulations
could address these issues.

Our classification analysis shows how downstream neurons
can utilize the same IT population to achieve good perfor-
mance on at least two different visual recognition tasks. For the
brain to utilize a fixed IT representation in this flexible manner
requires different downstream readouts of IT—different
weightings across the IT populations. Although each such
readout is biological plausible (see METHODS), this study cannot
address how different readouts are mechanistically achieved in
the brain. However, given the flexibility of our behavior and
the number of tasks we are capable of performing, we specu-
late that these different readouts are not hard-wired, but might
be dynamically invoked in the frontal cortices where decisions
and associations are rapidly made (Freedman and Assad 2006;
Freedman et al. 2001).

As shown in Fig. 3C, although populations of neurons
with different clutter rules gave approximately equal recog-
nition performance, populations of neurons that were insen-
sitive to both position and clutter (CCI) provided the best
performance in the position-invariant tasks in clutter. This

suggests that, at least for certain recognition tasks, high
position and clutter invariance may be desirable (note that
such “invariance” is an extreme form of tolerance, see Fig.
7). More generally, we are not ruling out possible advan-
tages of having single-unit responses that are insensitive to
image transformations. For example, here we focus on the
ability of a population to present well-formatted information
to downstream neurons, but we do not address the problem
of how the downstream neurons find that information (com-
putationally, how the linear classifiers find the best set of
weights on the IT population without the benefit of visual
experience with at least some similar conditions). That is,
we do not explore the representation’s ability to generalize
well outside its realm of experience. In particular, it is
reasonable to expect that position-insensitive single neurons
would facilitate generalization over position, (e.g., identify-
ing an object at a position in which it has never been seen),
and clutter-insensitive single neurons would facilitate iden-
tifying a familiar object among novel objects in a cluttered
scene. That is, ideal properties depend on one’s goal: at a
descriptive level, transformation-sensitive neurons are more
desirable for supporting a range of recognition tasks, and
transformation-insensitive neurons may be more desirable
for generalization (Fig. 7). This might explain why the IT
population contains a mix of highly transformation-sensitive
and -insensitive neurons (Zoccolan et al. 2007), but this still
leaves open the mechanistic question of how those neurons
are created (again, how they find the conditions to general-
ize over). Generalization is especially challenging in the
case of clutter given the virtually infinite number of clutter
conditions that can be encountered in natural vision. This
may explain why the brain employs attentional resources to
achieve higher clutter-invariance at the level of individual
ventral stream neurons (Chelazzi et al. 1998; Moran and
Desimone 1985; Reynolds and Chelazzi 2004; Reynolds and
Desimone 1999).

In this paper, we restricted ourselves to analysis on the
recorded data and followed by simulated data that mimics the
real data but allowed us to systematically vary particular
parameters of interest and examine their impact on population
performance. While this approach gives us good understanding
about the behavior of a particular type of neural code, it lacks
a deep theoretical foundation. For example, all the clutter rules
achieved similar performance because all the clutter rules
produced response functions that preserved the rank order of
object selectivity, yet it remains unclear which class of re-
sponse functions is mathematically optimal. Very likely, the
preservation of rank-order object selectivity is not the sole
attribute that determines the goodness of a representation to
support object recognition. Probably, many attributes of a
neuron’s response function determine how closely they match
the output response function (e.g., response function shape,
size, etc). Here our results showed that among those different
attributes, preservation of rank-order object preference is the
most important. With assumptions about the tasks a represen-
tation supports, the neuronal noise characteristic (e.g., Pois-
son), and the readout mechanisms, the problem might be
formalized mathematically (Ma et al. 2006; Salinas 2006).
However, formalizing this in a theoretical framework is be-
yond the scope of this paper.
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Moving forward

Minimally, we hope that the results and simulations pre-
sented here clarify the single-unit properties that enable a
neuronal population to support different kinds of recognition
tasks. We believe that these results offer at least two avenues
of forward guidance. First, we predict that if one estimates each
neuron’s rank-order preservation of object preferences in the
face of image transformations (such as position and clutter),
that property will gradually increase along the ventral visual
hierarchy. This may be true even though the RF sizes or clutter
sensitivity may vary widely (e.g., some IT neurons have
smaller RFs than some V4 neurons). Future physiology studies
should be geared more toward measuring selectivity across
transformations rather than measuring response magnitude
alone. These data are already available for some transforma-
tions, such as positions and size (Brincat and Connor 2004;
Gross et al. 1993; Ito et al. 1995; Janssen et al. 2008), visual
cue (Sary et al. 1993), occlusion (Kovacs et al. 1995), and
clutter (Zoccolan et al. 2005), but more systematic measure-
ments and comparisons across visual areas are needed. In
particular, preservation of rank-order selectivity could poten-
tially be used as a metric to probe the complexity of tuning for
each representation (e.g., V1 neurons probably have good
rank-order preservation for Gabor patch stimuli, but not for
object stimuli, even if those objects are small enough to fit
within their RF). Second, in contrast to preservation of the
response magnitude, preservation of the rank-order object
selectivity is a more precise and parsimonious goal for com-
putational approaches aimed at capturing the mechanisms un-
derlying a powerful object representation in the brain. The key
question then is to understand how the ventral stream takes the
initial response functions with little rank-order preservation
(Fig. 5A, V1 units) and achieves rank-order preservation at its
highest stages (Fig. 5A, IT units). Understanding this is the
crux of understanding how invariant object recognition is
achieved.
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