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Deep neural networks currently provide the best quantitative models of the response1 1

patterns of neurons throughout the primate ventral visual stream. However, such net-2 2

works have remained implausible as a model of the development of the ventral stream, in3 3

part because they are trained with supervised methods requiring many more labels than4 4

are accessible to infants during development. Here, we report that recent rapid progress5 5

in unsupervised learning has largely closed this gap. We find that neural network models6 6

learned with deep unsupervised contrastive embedding methods achieve neural prediction7 7

accuracy in multiple ventral visual cortical areas that equals or exceeds that of models de-8 8

rived using today’s best supervised methods, and that the mapping of these neural network9 9

models’ hidden layers is neuroanatomically consistent across the ventral stream. More-10 10

over, we find that these methods produce brain-like representations even when trained11 11

on noisy and limited data measured from real children’s developmental experience. We12 12
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also find that semi-supervised deep contrastive embeddings can leverage small numbers13 13

of labelled examples to produce representations with substantially improved error-pattern14 14

consistency to human behavior. Taken together, these results suggest that deep contrastive15 15

embedding objectives may be a biologically-plausible computational theory of primate16 16

visual development.17 17

The remarkable power of primate visual object recognition is supported by a hierarchically-18 18

organized series of anatomically-distinguishable cortical areas, called the ventral visual stream.19 19

Early visual areas, such as primary visual cortex (V1), capture low-level features including20 20

edges and center-surround patterns1,2. Neural population responses in the highest ventral visual21 21

area, inferior temporal (IT) cortex, contain linearly separable information about object category22 22

that is robust to significant variations present in natural images3,4,5. Mid-level visual areas such23 23

as V2, V3, and V4 are less well understood, but appear to perform intermediate computations24 24

between simple edges and complex objects, correlating with sequentially increasing receptive25 25

field size6,7,8,9,10,11,12,13,14.26 26

Recently, significant progress has been achieved in approximating the function of the adult27 27

primate ventral visual stream through using Deep Convolutional Neural Networks (DCNNs),28 28

a class of models directly inspired by many of these neurophysiological observations15,16. Af-29 29

ter being trained to learn image categorization tasks from large numbers of hand-labelled im-30 30

ages, DCNNs have yielded the most quantitatively accurate predictive models of image-evoked31 31

population responses in early, intermediate, and higher cortical areas within the ventral vi-32 32

sual stream17,18,19. The behavioral error patterns generated by these networks have also proven33 33

consistent with those of humans and non-human primates20. Notably, such networks are not34 34

directly optimized to fit neural data, but rather to solve ecologically-meaningful tasks such as35 35

object recognition. Strong neural and behavioral predictivity just “falls out” as a consequence36 36

of the high-level functional and structural assumptions constraining the networks’ optimization.37 37
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Similar task-based neural network optimization approaches have led to successes in modeling38 38

the human auditory cortex21 and aspects of motor cortex22. These results suggest that the prin-39 39

ciple of “goal-driven modeling”23 may have general utility for modeling sensorimotor systems.40 40

Though this progress at the intersection of deep learning and computational neuroscience41 41

is intriguing, there is a fundamental problem confronting the approach: typical neural net-42 42

work models of the ventral stream are built via supervised training methods involving huge43 43

numbers of semantic labels. In particular, today’s best models of visual cortex are trained on44 44

ImageNet, a dataset that contains millions of category labeled images organized into thousands45 45

of categories24. Viewed as a technical tool for machine learning, massive supervision can be46 46

acceptable, although it limits the purview of the method to situations with large existing la-47 47

belled datasets. As a real model of biological development and learning, such supervision is48 48

highly implausible, since human infants and non-human primates simply do not receive mil-49 49

lions of category labels during development25,26,27. Put another way, today’s heavily supervised50 50

neural-network based theories of cortical function may effectively proxy aspects of the real51 51

behavioral constraints on cortical systems, and thus be predictively accurate for adult cortical52 52

neural representations, but they cannot provide a correct explanation of how such representa-53 53

tions are learned in the first place. Identifying unsupervised learning procedures that achieve54 54

good performance on challenging sensory tasks, and effective predictions of neural responses55 55

in visual cortex, would thus fill a major explanatory gap.56 56

1 The recent emergence of high-performing unsupervised neu-57 57

ral networks.58 58

Substantial effort has been devoted to unsupervised learning algorithms over several decades,59 59

with the goal of learning task-general representations from natural statistics without high-level60 60

labelling. Early progress came from sparse autoencoding, which, when trained in shallow net-61 61
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work architectures on natural images, produces edge-detector-like response patterns resembling62 62

some primate V1 neurons28. However, when applied to deeper networks, such methods have not63 63

been shown to produce representations that transfer well to high-level visual tasks or match neu-64 64

ral responses in intermediate or higher visual cortex. More recent versions of autoencoders have65 65

utilized variational objective functions29, with improved task transfer performance. Unsuper-66 66

vised learning is also addressed in the predictive coding framework30, where networks learning67 67

to predict temporal or spatial successors to their inputs have achieved better task transfer31 and68 68

improved biological similarity32. Self-supervised methods, such as image colorization33, im-69 69

age context prediction34, and surface-normals/depth estimation35, have also exhibited improved70 70

task transfer.71 71

In the last two years, a new family of unsupervised algorithms has emerged with substan-72 72

tially improved transfer performance, approaching that of fully-supervised networks36,37,38,39,40,41.73 73

These methods, which we term contrastive embedding objectives, include Contrastive Multi-74 74

view Coding36 (CMC), Instance Recognition37 (IR), Momentum Contrast39 (MoCo), Simple75 75

Contrastive Learning of Representation40 (SimCLR), and Local Aggregation38 (LA). They76 76

optimize DCNNs to embed inputs into a lower-dimensional compact space, i.e. functions77 77

f : Rk×k → Sn, where Rk×k is the high-dimensional euclidean space containing k × k im-78 78

age bitmaps (with k ∼ 103) and Sn is the n-dimensional unit sphere (n ∼ 128). For any input79 79

x, the goal is to make the embedding f(x) “unique” — that is, far away in the embedding space80 80

from other stimuli, but close to different views of the original stimulus. All methods in this fam-81 81

ily share this optimization goal, though they differ significantly in the exact implementations to82 82

achieve this uniqueness and the definition of what different “views” are. In the Local Aggre-83 83

gation method (Fig. 1a), for example, uniqueness is encouraged by minimizing the distance to84 84

“close” embedding points and maximizing the distance to the “further” points for each input85 85

(Fig. 1a-b). Through this optimization, LA explicitly seeks to create features that generically86 86
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reflect any reliable natural statistic distinguishing between sets of inputs (Fig. 1c-d). Due to this87 87

genericity, DCNNs trained with LA create in higher network layers more and more subtle (but88 88

reliable) features for capturing whatever natural correlations are present, thus better supporting89 89

any specific high-level visual task that implicitly relies on creating distance-based boundaries90 90

in that feature space (e.g. object recognition).91 91

To evaluate these unsupervised learning algorithms, we trained representatives of each type92 92

described above on images from a large-scale high-quality image dataset using a fixed network93 93

architecture that has previously been shown to achieve high task performance42 and neural re-94 94

sponse predictivity43 when trained in a supervised manner. We found that these unsupervised95 95

representations achieved categorization transfer performance in line with previously reported96 96

results, validating the soundness of our implementations (Fig 1e, upper). Contrastive embed-97 97

ding objectives (red bars in Fig 1e) showed significantly better transfer than self-supervised98 98

tasks (blue bars), predictive coding methods (orange bars), and autoencoders. We also evaluated99 99

these representations on transfer to a variety of other object-centric visual tasks independent of100 100

object category, including object position localization and pose estimation (Fig 1e, middle and101 101

lower), finding that contrastive embedding objectives also achieved better transfer performance102 102

on these tasks. These results suggest that such unsupervised networks have achieved a general103 103

improvement in the quality of the visual representation.104 104

2 Recent unsupervised models capture neural responses through-105 105

out ventral visual cortex.106 106

To determine whether the improvement of unsupervised methods on task transfer performance107 107

translates to better neural predictivity, we fit a regularized linear regression model from network108 108

activations of each unsupervised model to neural responses collected from array electrophysiol-109 109

ogy experiments in the macaque ventral visual pathway (Fig. 2a). Comparison to V1 was made110 110
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using neural data collected by Cadena et al.19 and comparison to V4 and IT was made using111 111

data collected by Majaj et al.3 (see Methods for more details). Following techniques previously112 112

used to compare supervised networks to neural response patterns17,44, we compared each neu-113 113

ral network separately to the neural data, and reported the noise-corrected correlation between114 114

model and neural responses across held-out images, for the best-predicting layer for each model115 115

(Fig. 2b). We also compared to an untrained model, which represents an architecture-only base-116 116

line. Over all, we found that the unsupervised methods that had higher transfer performance to117 117

categorization predict neural responses substantially better than less-performant unsupervised118 118

methods. All unsupervised methods were significantly better than the untrained baseline at119 119

predicting responses in early visual cortical area V1, but none were statistically distinguish-120 120

able from the category-supervised model on this metric. In contrast, only a subset of methods121 121

achieve parity with the supervised model in predictions of responses in intermediate cortical122 122

area V4. (Interestingly, the deep autoencoder is not better than the untrained model on this123 123

metric and both are widely separated from the other trained models.) For IT cortex at the top of124 124

the ventral pathway, only the best-performing contrastive embedding methods achieve neural125 125

prediction parity with supervised models. Among these methods, we found that the Local Ag-126 126

gregation model, which has recently been shown to achieve state-of-the-art unsupervised visual127 127

recognition transfer performance38, also achieves the best neural predictivity. In fact, LA ex-128 128

hibits somewhat better V4 predictivity (two-tailed paired t-test over neurons, p=0.0087) than, as129 129

well as comparable V1 (two-tailed paired t-test over neurons, p=0.98) and IT (two-tailed paired130 130

t-test over neurons, p=0.32) predictivity to, its supervised counterpart (see Extended Data Fig. 1131 131

for details and other t-test results). To ensure that our results are not specific to the chosen neural132 132

network architecture, we also evaluated several alternative architectures and found qualitatively133 133

similar results (Extended Data Fig. 7).134 134

To further quantify the match between the computational models and brain data, we also in-135 135
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vestigated which layers of DCNNs best match which cortical brain areas (Fig. 2c and Extended136 136

Data Fig. 2). We found that the deep contrastive embedding models also evidence the correct137 137

model-layer-to-brain-area correspondence, with early-layer representations best predicting V1138 138

neural responses, mid-layer representations best predicting V4 neural responses, and higher-139 139

layer representations best predicting IT neural responses. In contrast, unsupervised models140 140

with lower task performance and neural predictivity exhibit less accurate model-brain corre-141 141

spondence, while the untrained baseline does not show the correct correspondence at all. This142 142

conclusion is consistent across multiple quantitative metrics of mapping consistency including143 143

optimal layer match (Fig. 2c and Extended Data Fig. 2) as well as best predicted layer ratio144 144

metric (Extended Data Fig. 3).145 145

In addition to the quantitative metrics described above, we also sought to qualitatively assess146 146

models. DCNNs trained with different unsupervised loss functions exhibit first layer filters147 147

with Gabor wavelet-like tuning curves like those observed in V1 data, consistent with their148 148

good neural predictivity for V1 neurons (Extended Data Fig. 4). The LA-based model, like149 149

the category-supervised model, also exhibited color-opponent center-surround units consistent150 150

with empirical observations45,46. Additionally, we examined optimal stimuli driving neurons in151 151

intermediate and higher model layers using techniques similar to those used in recent model-152 152

driven electrophysiology experiments47. Consistent with qualitative descriptions of receptive153 153

fields in the literature on V4 cortex14, we found that unsupervised models with good quantitative154 154

match to V4 data exhibit complex textural patterns as optimal stimuli for their most V4-like155 155

layers (Extended Data Fig. 5). In contrast, the optimal stimuli driving neurons in the most IT-156 156

like model layers appear to contain fragments of semantically-identifiable objects and scenes157 157

and large-scale organization (Extended Data Fig. 6), echoing qualitative neurophysiological158 158

findings about IT neurons48.159 159
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3 Deep constrastive learning can leverage noisy real-world160 160

video datastreams.161 161

Although we have shown that deep contrastive embedding models learn ventral-stream-like162 162

representations without using semantic labels, the underlying set of images used to train these163 163

networks — the ImageNet dataset — diverges significantly from real biological datastreams.164 164

For example, ImageNet contains single images of a large number of distinct instances of objects165 165

in each category, presented cleanly from sterotypical angles. In contrast, real human infants166 166

receive images from a much smaller set of object instances than ImageNet, viewed under much167 167

noisier conditions49. Moreover, ImageNet consists of statistically independent static frames,168 168

while infants receive a continuous stream of temporally correlated inputs50. A better proxy169 169

of the real infant datastream is represented by the recently-released SAYCam51 dataset, which170 170

contains head-mounted video camera data from three children (about 2 hours/week spanning171 171

ages 6-32 months) (Fig. 3b).172 172

To test whether deep contrastive unsupervised learning is sufficiently robust to handle noisy173 173

and limited real-world videostreams such as SAYCam, we implemented the Video Instanace174 174

Embedding (VIE) algorithm, a recent extension of LA to video that achieves state-of-the-art175 175

results on a variety of dynamic visual tasks, such as action recognition52 (Fig. 3a). Repre-176 176

sentations learned by VIE on videos from SAYCam proved highly robust, approaching the177 177

neural predictivity of those trained on ImageNet (Fig. 3c). The temporally-aware VIE-trained178 178

representation was significantly (though modestly) better than a purely static network trained179 179

with LA on SAYCam frames, while both were very substantially better than PredNet, a recent180 180

biologically-inspired implementation of predictive coding32. These results suggest that deep181 181

spatiotemporal contrastive learning can take advantage of noisy and limited natural datastreams182 182

to achieve primate-level representation learning. A small but statistical significant gap between183 183
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the SAYCam-trained and ImageNet-trained networks remains, possibly due either to limitations184 184

in the dataset (SAYCam was recorded for only two hours/week, representing a small fraction of185 185

the visual data infants actually receive) or in VIE itself.186 186

4 Partial supervision improves behavioral consistency.187 187

While infants and non-human primates do not receive large numbers of semantic labels dur-188 188

ing development, it is likely that they do effectively receive at least some labels, either from189 189

parental instruction or through environmental reward signals. For human infants, object labels190 190

are provided by parents from birth onwards, but the earliest evidence for comprehension of any191 191

labels is at roughly 6-9 months of age25, and comprehension of most common object labels is192 192

low for many months thereafter26. However, visual learning begins significantly earlier at, and193 193

indeed before, birth53. This observation suggests that a period of what might be characterized194 194

as purely unsupervised early visual learning could be followed by a period of learning partially195 195

from labels. To capture this idea, we turned to semi-supervised learning, which seeks to lever-196 196

age small numbers of labelled datapoints in the context of large amounts of unlabelled data. As197 197

with unsupervised learning, the power of semi-supervised learning algorithms has developed198 198

dramatically in recent years, benefiting from advances in understanding of neural network ar-199 199

chitectures and loss functions. The state-of-the-art existing semi-supervised learning algorithm,200 200

Local Label Propagation54 (LLP), builds directly on the contrastive embedding methods. Like201 201

those methods, LLP embeds datapoints into a compact embedding space and seeks to optimize202 202

a particular property of the data distribution across stimuli, but additionally takes into account203 203

the embedding properties of sparse labelled data (Fig. 4a). Here, we implemented both LLP204 204

and an alternative semi-supervised learning algorithm, the Mean Teacher55 (MT) (Extended205 205

Data Fig. 9). As precise estimates of the number of object labels available to children and the206 206

proportion of these that unambiguously label a specific object do not exist, we trained both207 207
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semi-supervised models on the ImageNet dataset with 1.2M unlabeled and a range of supervi-208 208

sion fractions, corresponding to different estimates of the number of the object speech-vision209 209

copresentations infants perceive and comprehend within the first year of life27. We also imple-210 210

mented a simple few-label control, in which standard supervision was performed using only the211 211

labeled datapoints.212 212

For each trained model, we then compared their object recognition error patterns to those in213 213

human and primates, following the methods of Rajalingham et al.20, who show that category-214 214

supervised DCNNs exhibit error patterns with improved consistency to those measured in hu-215 215

mans. We first extracted “behavior” from DCNNs by training linear classifiers from the penul-216 216

timate layer of the neural network model, and measured the resulting image-by-category con-217 217

fusion matrix. An analogous confusion matrix was then independently measured from humans218 218

in large-scale psychophysical experiments (see Fig. 4b). The behavioral consistency between219 219

DCNNs and humans is quantified as the noise-corrected correlation between these confusion220 220

matrices (see Methods). We evaluated behavioral consistency both for semi-supervised models221 221

as well as the unsupervised models described above. Even using just 36K labels (corresponding222 222

to 3% supervision), both LLP and MT lead to representations that are substantially more be-223 223

haviorally consistent than purely unsupervised methods, though a gap to the supervised models224 224

remains (Fig. 4d, see Extended Data Fig. 8 for t-test results). Interestingly, although the unsu-225 225

pervised LA algorithm is less consistent than either of the semi-supervised methods that feature226 226

an interaction between labelled and unlabelled data, it is more consistent than the few-label227 227

control. We find broadly similar patterns with different amounts of supervision labels (Fig. 4e-228 228

f). These results suggest that semi-supervised learning methods may capture a feature of real229 229

visual learning that builds on, but goes beyond, task-independent self-supervision.230 230
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5 Discussion231 231

We have shown that deep contrastive unsupervised embedding methods accurately explain and232 232

predict image-evoked neural responses in multiple visual cortical areas along the primate ventral233 233

visual pathway, equaling the predictive power of supervised models. Moreover, the mapping234 234

from the layers of these unsupervised networks to corresponding cortical areas is neuroanatom-235 235

ically consistent, and reproduces several qualitative properties of the visual system. We have236 236

also shown that deep contrastive learning methods can take advantage of noisy and limited237 237

datasets arising from real developmental datastreams to learn strong visual representations, and238 238

that training with a semi-supervised learning objective allowing incorporation of small amounts239 239

of supervision creates networks with improved behavioral consistency with humans and non-240 240

human primates. Taken together, these results suggest that an important gap in the promising241 241

but incomplete goal-driven neural network theory of visual cortex may be close to resolution.242 242

Contrastive embedding objectives generate image embeddings that remain invariant under243 243

certain “viewpoints” while being distinguishable from others. By minimizing these obejctives,244 244

networks effectively discover non-prespecified high-level image statistics that support reliable245 245

and generalizable distinctions56. This feature distinguishes the deep contrastive embedding ap-246 246

proach from earlier unsupervised models such as autoencoders or self-supervised tasks, which247 247

optimized low-level or narrowly-defined image statistics and, as a result, learned less powerful248 248

representations. Because deep contrastive embedding methods are quite generic, and do not249 249

require the implementation of strong domain-specific priors (e.g. the presence of visual objects250 250

in 3D scenes), the application of similar methods might further understanding in other sensori-251 251

motor cortical domains where supervised neural networks have proven useful as predictors of252 252

neural responses21,22.253 253

Though our results help clarify a key problem in the modeling of sensory learning, many254 254
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major questions remain. Our work addresses how the visual system might develop post-natally255 255

via natural visual experience, replacing an effective but implausible learning method (heavily-256 256

supervised categorization) with one that an organism might more plausibly implement in the257 257

real world (unsupervised or semi-supervised contrastive embedding loss). However, our work258 258

does not address gaps in understanding of either the architecture class of the neural network or259 259

the low-level mechanistic learning rule.260 260

By design, we here use the same deep feed-forward neural network architectures that have261 261

been effective for supervised learning. While such networks might be sufficient to predict tem-262 262

poral averages during the first volley of stimulus-evoked neural responses, they are insufficient263 263

to describe the response dynamics of real neurons57. Recent work has begun to integrate into264 264

neural networks analogs of the recurrences and long-range feedbacks that have been ubiqui-265 265

tously observed throughout the visual system, toward better modeling neural dynamics58. This266 266

work has been in the supervised context, so a natural future direction is to connect these archi-267 267

tectural improvements with the unsupervised objectives explored here.268 268

As for the mechanisms of the learning rule, our work still uses standard backpropagation269 269

for optimization (albeit with unsupervised rather than supervised objective functions). Back-270 270

propagation has several features that make it unlikely to be implementable in real organisms59.271 271

Historically, the question of biologically plausible unsupervised objective functions (e.g. learn-272 272

ing targets) is intertwined with that of biologically plausible learning rules (e.g. the mechanism273 273

of error-driven update). Some specific unsupervised objective functions, such as sparse autoen-274 274

coding, can be optimized with Hebbian learning rules that do not require high-dimensional error275 275

feedback60. However, this intertwining may be problematic, since the more effective objective276 276

functions that actually lead to powerful and neurally predictive representations do not obviously277 277

lend themselves to simple Hebbian learning. We thus suggest that these two components — op-278 278

timization target and mechanism — may be decoupled, and that such decoupling might be a279 279
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principle for biologically-plausible learning. This hypothesis is consistent with recent work on280 280

more biologically-plausible local learning rules that effectively implement error feedback61. It281 281

would be of substantial interest to build networks that use these learning rules in conjunction282 282

with unsupervised contrastive-embedding objective functions and recurrent convolutional archi-283 283

tectures. If successful, this would represent a much more complete goal-driven deep learning284 284

theory of visual cortex.285 285

Better training environments will also be critical. Although SAYCam is more realistic than286 286

ImageNet, there are still many important components of real developmental datastreams miss-287 287

ing in SAYCam, including (but not limited to) the presence of in utero retinal waves53, the long288 288

period of decreased visual acuity62, and the lack of non-visual (e.g auditory and somatosensory)289 289

modalities that are likely to strongly self-supervise (and be self-supervised by) visual represen-290 290

tations during development63. Moreover, real visual learning is likely to be at some level driven291 291

by interactive choices on the part of the organism, requiring a training environment more pow-292 292

erful than any static dataset can provide64,65.293 293

Unsupervised deep contrastive embedding methods are more ecologically plausible than294 294

heavily supervised learning, in that it is possible to imagine a simple neural circuit by which295 295

the organism could encode the contrastive loss objective, operating just on the sensory data the296 296

organism naturally receives during post-natal development and beyond. However, it is interest-297 297

ing to note that the neural predictivity of the best unsupervised method only slightly surpasses298 298

that of supervised categorization models. Moreover, the detailed pattern of neural predictivities299 299

across units of the best unsupervised models also generally aligns with that of the supervised300 300

models (Extended Data Fig. 10). One possible explanation for these outcomes is that visual301 301

categorization is indeed a good description of the larger evolutionary constraint that the primate302 302

visual system is under, while the unsupervised algorithm is best understood as a developmental303 303

proxy for how other inaccessible representational goals might be “implemented” by the organ-304 304
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ism. Another possibility is that the neurophysiological data used in this study simply does not305 305

have the power to resolve differences between the supervised and best unsupervised models. A306 306

third possibility is that better unsupervised learning methods yet to be discovered will achieve307 307

improved neural predictivity results, substantially surpassing that of categorization models.308 308

Ultimately, a theory of visual post-natal development should go beyond just predicting neu-309 309

ral responses in adult animals, and also provide a model of changes over the time line of post-310 310

natal development. The long-term learning dynamics of any model generates trajectories of ob-311 311

servables that could in principle be compared to similar observables measured over the course312 312

of animal development. The concept of such developmental trajectory comparison is illustrated313 313

in Extended Data Fig. 11, where we show the trajectories of observables including orienta-314 314

tion selectivity, task performance, and an analog of neural maturation rate, over the course of315 315

“in-silico development.” Treating each distinct unsupervised objective function as a different316 316

hypothesis for the learning target of visual development, the comparison of these curves can be317 317

seen to successfully distinguish between the various hypotheses, even when the final “adult”318 318

state may not easily separate them. To the extent that measurements of these (or other) ob-319 319

servables can be made over the course of biological development, it would then be possible to320 320

determine which model(s) are closest to the true developmental trajectory, or to convincingly321 321

falsify all of them. The specific observables that we measure here in silico may not be eas-322 322

ily experimentally accessible, as developmental neuroscience remains technically challenging.323 323

However, our results suggest a strong motivation for turning a recent panoply of exciting tech-324 324

nical neuroscience tools66,67 toward the developmental domain. In the context of model-driven325 325

experimental designs, such measurements would be of great value not only to provide insights326 326

into how visual learning proceeds, but could also inspire better unsupervised or semi-supervised327 327

learning algorithms.328 328
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Figure 1: Improved representations from unsupervised neural networks based on deep contrastive
embeddings. (a) Schematic for one high-performing deep contrastive embedding method, the Local
Aggregation (LA) algorithm38. In LA, all images were embedded into a lower dimensional space by
a DCNN, which was optimized to minimize the distance to “close” embedding points (blue dots) and
to maximize the distance to the “further” points (black dots) for the current input (red dot). (b) (Left)
Change in the embedding distribution before and after training. For each image, cosine similarities to
others were computed and ranked; the ranked similarities were then averaged across all images. This
metric indicates that the optimization encourages local clustering in the space, without aggregating ev-
erything. (Right) Average neighbor embedding “quality” as training progresses. Neighbor embedding
quality was defined as fraction of 10 closest neighbors of the same ImageNet class label (not used in
training). (c) Top-four closest images in the embedding space. Top three rows show the images that were
successfully classified using a weighted K-Nearest-Neighbor (KNN) classifier in the embedding space
(K=100), while bottom three rows show unsuccessfully-classified examples (G means ground truth, P
means prediction). Even when uniform distance in the unsupervised embedding does not align with Im-
ageNet class (which itself can be somewhat arbitrary given the complexity of the natural scenes in each
image), nearby images in the embedding are nonetheless related in semantically meaningful ways. (d)
Visualizations of Local Aggregation embedding space using Multi-Dimensional Scaling (MDS) method.
Classes with high validation accuracy are shown in left panel and low accuracy classes are in right panel.
Gray boxes show examples of images from a single class (“trombone”) that have been embedded in
two distinct subclusters. (e) Transfer performance of unsupervised networks on three evaluation tasks:
ImageNet categorization (upper), object position estimation (middle), and object orientation estimation
(lower). Networks were first trained by unsupervised methods, then assessed on transfer performance
with supervised linear readouts from network hidden layers (see Methods). Red bars are contrastive
embedding tasks. Blue bars are for self-supervised tasks. Orange bars are for predictive coding methods
and Auto-Encoder. White bar is the untrained model and black bar is the model supervised on ImageNet
category labels. Error bars are standard variances across three networks with different initializations.
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Figure 2: Quantifying similarity of unsupervised neural networks to visual cortex data. (a) After
being trained with unsupervised objectives, networks were run on all stimuli for which neural responses
were collected. Network unit activations from each convolutional layer were then used to predict the V1,
V4, and IT neural responses with regularized linear regression44. For each neuron, the Pearson correla-
tion between the predicted responses and the recorded responses was computed on held-out validation
images, and then corrected by the noise ceiling of that neuron (see Methods). The median of the noise-
corrected correlations across neurons for each of several cortical brain areas was then reported. (b) Neu-
ral predictivity of the most-predictive neural network layer. Error bars represent bootstrapped standard
errors across neurons and model initializations (see Methods). Predictivity of untrained and supervised
categorization networks represents negative and positive controls respectively. (c) Neural predictivity
for each brain area from all network layers, for several representative unsupervised networks, including
Auto-Encoder, Colorization, and Local Aggregation.
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Figure 3: Learning from real-world developmental datastreams. (a) Schematic for Video Instance
Embedding (VIE) method. Frames were sampled into sequences of varying lengths and temporal den-
sities. They were then embedded into lower-dimensional space using static (single image) or dynamic
(multi-image) pathways. These pathways were optimized to aggregate the resulting embeddings and
their “close” neighbors (light brown points) and to separate the resulting embeddings and their “further”
neighbors (dark brown points). (b) Examples from the SAYCam dataset51, which was collected by head-
mounted cameras on infants for two hours each week between ages 6-36 months. (c) Neural predictivity
for models trained on SAYCam and ImageNet. “n.s.” means that the two-tailed paired t-test is not sig-
nificant. “***” means highly significant t-test result (p=2.9 × 10−9 for V4 and p=1.9 × 10−5 for IT).
Error bars represent bootstrapped standard errors across neurons and model initializations.
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Figure 4: Behavioral consistency and semi-supervised learning. (a) In the Local Label Propagation
(LLP) method54, DCNNs generated an embedding and a category prediction for each example. The
embedding (?) of an unlabeled input was used to infer its pseudolabel considering its labeled neighbors
(colored points) with voting weights determined by their distances from ? and their local density (the
highlighted areas). DCNNs were then optimized with per-example confidence weightings (color bright-
ness) so that its category prediction matched the pseudo-label, while its embedding was attracted toward
the embeddings sharing the same pseudo-labels and repelled by the others. (b) To measure behavioral
consistency, we trained linear classifiers from each model’s penultimate layer on a set of images from
24 classes20,43. The resulting image-by-category confusion matrix was compared to data from humans
performing the same alternative forced choice task, where each trial started with a 500ms fixation point,
presented the image for 100ms, and required the subject to choose from the true and another distractor
category shown for 1000ms20,43. We report the Pearson correlation corrected by the noise ceiling. (c)
Example confusion matrixes of human subjects and model. Each category had ten images as the test
images for computing the confusion matrixes. (d) Behavioral consistency of DCNNs trained by different
tasks. Green bars are for semi-supervised models trained with 36K labels. “Few-Label” represents a
ResNet-18 trained on ImageNet with only 36K images labeled, the same amount of labels used by MT
and LLP models. Error bars are standard variances across three networks with different initializations.
(e, f) Behavioral consistency (e) and categorization accuracy in percentage (f) of semi-supervised models
trained with differing numbers of labels.
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Methods483 483

Neural Network Training484 484

We used ResNet-1842 without its final pooling layer and the categorization readout layer as485 485

visual backbones for all tasks except PredNet. For each task, we trained three networks with486 486

different network initializations. Most tasks were performed by adding an additional header487 487

upon the visual backbone and then training the whole network with the task-specific loss in488 488

addition to a L2-regularization loss of the network weights with a weight decay coefficient 10−4.489 489

Unless specified, the input image to the networks was in resolution 224 × 224 and there were490 490

two learning rate drops during training. The learning rate was dropped by 10 times after the491 491

validation performance saturates. Most training hyperparameters such as the batch size and the492 492

initial learning rate were set according to the papers of these tasks. As the Local-Aggregation493 493

task is already introduced in the main text, we only briefly describe other tasks below, of which494 494

the details can be found in their corresponding papers. For each task, we trained three networks495 495

with different initializations.496 496

Auto-Encoder. The image was first projected into a 128-dimension hidden vector. An output497 497

image was then generated from this vector using a reversed ResNet-18. The Auto-Encoder loss498 498

optimized was the sum of the L2 different between the output and the input images and the499 499

L1-norm of the hidden vector multiplied by 10−4.500 500

PredNet 68. PredNet network was trained to predict the next frame using previous frames501 501

and a specifically-designed recurrent neural network architecture including four modules each502 502

of which has three layers. As ResNet-18 is a feedforward network, it cannot be used in PredNet.503 503

We also found that PredNet failed to train more layers added to each module. Therefore, we504 504

used the same network architecture as the original paper68. Later neural fitting, object posi-505 505

tion/pose estimation task, and categorization tasks were all performed using each of the twelve506 506
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layers and we reported the best number across these layers. As the network architecture is very507 507

different from others, we cannot show comparable neural fitting layer trajectories.508 508

Depth Prediction. A multi-layer header was added to the visual backbone to output a per-509 509

pixel depth image35. This depth image was then compared the ground truth normalized depth510 510

image, of which the mean was 0 and the standard deviation was 1 within one image. The L2-511 511

norm of the difference was used as the optimization loss. This task was trained on PBRNet,512 512

which is a large-scale synthetic dataset containing 0.4 million images which are physically-513 513

based rendered from 45K realistic 3D indoor scenes69.514 514

Contrastive Predictive Coding (CPC)31. A grid of small crops were taken from the input515 515

image and then fed into the network to generate a grid of low-dimension embeddings. The516 516

network was then optimized to predict one embedding from its spatial neighbors using a re-517 517

current head. Although this method has “contrastive” in its name, CPC is very different from518 518

deep contrastive embedding methods as it predicts the current embedding in the context of the519 519

embeddings of all the other small crops within the same image, while for deep contrastive em-520 520

bedding methods, the “contrastive” usually represents the context of the embeddings of other521 521

examples.522 522

Colorization33. The input image was first converted into Lab color space. The L channel523 523

was then used as the input to the network to predict the ab channels.524 524

Relative Position34. Two small image crops were first chosen from a 3 × 3 grid of small525 525

image crops and then fed into the network. Their outputs were then used to predict the relative526 526

spatial position using a multi-layer header.527 527

Contrastive Multiview Coding (CMC)36. The input image was first converted into Lab color528 528

space. Both L and ab channels were embedded into 128-dimension vectors using two different529 529

visual backbones. These two visual backbones were then optimized to push together the vec-530 530

tors of corresponding L and ab channels and to separate them away from the embeddings of531 531
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other images. The L-ResNet18 was used to evaluate the neural predictivity and the behavior532 532

consistence metric, as the stimulus used there are all gray-scale images.533 533

Deep Cluster 41. All training images were first embedding into a lower-dimension space.534 534

These embeddings were then clustered into small clusters using the KMeans algorithm. The535 535

index of the cluster one image belonged to was used as a category label for this image to train536 536

the network. These steps were iterated to get the final network.537 537

Instance Recognition37. The input image was embedded into a 128-dimension space and538 538

the network was then optimized to separate the current embedding from all other embeddings in539 539

this space and also to aggregate the current embedding and the running-average of embeddings540 540

of previous training examples from the same image, which are different data augmentation541 541

instances.542 542

SimCLR40. SimCLR has the same objective as Instance Recognition, but is different from543 543

it in its architecture between visual backbone and the embedding, more data-augmentations, a544 544

different hyper-parameter, and a bigger batch-size during training. We used the official codes545 545

from the authors to train our SimCLR ResNet-18.546 546

VIE 52. We trained two pathways using VIE loss on SAYCam: static pathway with ResNet-547 547

18 and dynamic pathway with 3D-ResNet-18, which receives 16 consecutive frames and applies548 548

temporal and spatial convolutions52. The pretrained two pathways were concatenated across549 549

the channel dimension in each layer as the final network. When testing on static stimuli, we550 550

repeated the images for 16 times and averaged the responses of the dynamic pathway across the551 551

temporal dimension.552 552

Neural Predictivity Evaluation553 553

Neural response dataset for V1 area. This dataset was collected by presenting stimulus to554 554

two awake and fixating macaques, where responses of 166 neurons in V1 area were collected555 555
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by a linear 32-channel array19. The stimulus consisted of 1450 images from ImageNet and556 556

texture-like synthesized images matching the outputs of different layers of a ImageNet trained557 557

deep neural networks. The images were presented for 60ms each in one trial without blanks558 558

and centered on the population receptive field of the neurons in each session. A total of 262559 559

neurons were isolated in 17 sessions. The response latency of these neurons is typically 40ms.560 560

Therefore, spike counts between 40-100ms were extracted and averaged across trials to get the561 561

final responses. Neurons were further selected based on whether at least 15% of their total562 562

variance could be attributed to the stimuli, which left 166 neurons.563 563

Neural response dataset for V4 and IT areas. This dataset was collected by presenting stim-564 564

uli to two fixating macaques, on which three arrays of electrodes were implanted with one array565 565

in area V4 and the other two arrays in area IT3. The stimuli were constructed by rendering566 566

one of 64 3-dimensional objects at randomly chosen position, pose, and size, on a randomly567 567

chosen naturalistic photograph as background. These objects belonged to 8 categories (tables,568 568

planes, fruits, faces, chairs, cars, boats, animals), each of which consisted of 8 unique objects.569 569

According to the scale of variances position, pose, and size are sampled from, three datasets570 570

were generated, corresponding to low, medium, and high variations. For example, low varia-571 571

tion images had objects placed in the center of the images with a fixed position, pose, and size,572 572

while objects in high variation images are placed with a highly varied setting. There were in to-573 573

tal 5,760 images, of which 2,560 were high variation images and 2,560 were medium variation574 574

images. These images were presented to the primates for 100ms with 100ms of gap between575 575

images. During presentation, a circular mask was applied to each image, which subtended576 576

around 8 degree of visual angle. From the three arrays, the neural responses of 168 IT neurons577 577

and 88 V4 neurons were collected17,3. Following the previous studies17, we used the averaged578 578

responses between 70-170ms after stimuli presentation as this window contained most of ob-579 579

ject category-related information. The low and medium variation images were used to select580 580
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hyperparameters of neural fitting and only the prediction results on high variation images were581 581

reported.582 582

Downstream Task Performance Evaluation583 583

ImageNet categorization task. A linear readout layer was added to the pretrained visual back-584 584

bones. This layer was trained to perform the ImageNet categorization task through a cross-585 585

entropy loss. The initial learning rate was 0.01 and the training took 160 epochs. We dropped586 586

the learning rate at 40th, 80th, and 140th epochs. Each learning rate drop was by 10 times. A587 587

L2 regularization loss on the linear readout weights was used with the regularization coefficient588 588

10−4. We used the same data augmentations used in previous studies37,38: random cropping,589 589

random horizontal flip, random color jittering, and random gray-scale transform. We reported590 590

the best categorization performance on the official ImageNet validation set throughout the train-591 591

ing.592 592

Object position estimation task. We used the same dataset, on which the V4 and IT neural593 593

data was collected. For each pretrained visual backbone, we took the spatially averaged outputs594 594

from the first pooling layer and all eight residual blocks and then regressed them to predict both595 595

the vertical and the horizontal locations of the object center in the image. We chose the fitting596 596

hyperparameters on the low and medium variation subsets and tested the fitting on the high597 597

variation subset. The Pearson correlations between the predicted and the ground truth positions598 598

were computed for all layers. For each network, we picked the best layer using the separate599 599

dataset and reported the correlation averaged across both locations.600 600

Object pose estimation task. The only thing different in this task compared to position pre-601 601

diction task was that the prediction target was the z-axis (vertical axis) and the y-axis (horizontal602 602

axis) rotations.603 603

Neural response fitting procedure. For the neural network response no of one layer whose604 604
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output shape is [sx, sy, c], we fit a spatial mask ms of shape [sx, sy] and a channel mask mc of605 605

shape [c] for each neuron to predict its response r. The predicted response can be written as:606 606

r̂ =
sx∑
i=1

sy∑
j=1

c∑
k=1

ms[i, j]mc[k]no[i, j, k]

The optimized loss is then:607 607

L = (r̂ − r)2 + w(‖ms‖22 + ‖mc‖22)

We chose w on low and medium variation images used in collecting V4 and IT neural608 608

responses. The weights were trained on the training split and evaluated on the validation set.609 609

The Pearson correlation was computed between r̂ and r and further corrected by being divided610 610

by the square root of cross-trial neural response correlation43. The median value of the corrected611 611

correlations of all neurons within one cortical area was reported for one layer as its neural612 612

predictivity for this area. For each neuron, the neural predictivity is first averaged across all three613 613

networks. The error bars are the standard variances of means generated through bootstrapping614 614

from neural predictivity of all neurons for 200 times.615 615

Optimal Stimuli Computation616 616

Following a previous study70, we optimized the 2D discrete Fourier transform of the input617 617

image to maximize the spatially averaged responses of one channel in a given layer. We used618 618

Adam optimizer with learning rate 0.05 and trained for 512 steps. In each training step, random619 619

augmentations including jitterring, scaling, and rotations were applied to the input image70.620 620

Human Behavior Consistence Metric621 621

The behavior dataset consists of 2400 images generated by putting 24 objects in front of high-622 622

variant and independent naturalistic backgrounds20. For each pretrained network, a linear clas-623 623
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sifier was trained from the penultimate layer on 2160 training images to predict the category.624 624

As the number of features may be too large, we tested three dimension reduction methods and625 625

report the best consistency among them. These methods are: 1. averaging across spatial dimen-626 626

sions; 2. PCA projections to 1000 components using ImageNet validation images; 3. Training a627 627

1000-dimension linear category-centric projection through adding a linear layer outputing 1000628 628

units upon the current layer and another linear readout upon this linear layer and then training629 629

only these two added layers to do ImageNet categorization tasks. The resulted confusion ma-630 630

trix on 240 validation images was compared to that of human subjects, for which 1,472 human631 631

subjects were recruited from Amazon Mechanical Turk (details can be found in Rajalingham et632 632

al.20 and Schrimpf et al.43). The Pearson correlation between the matrixes was computed and633 633

then corrected by dividing it using the square root of human split-half correlation43.634 634

Data Availability635 635

ImageNet can be downloaded from http://www.image-net.org/. SAYCam can be downloaded636 636

from https://nyu.databrary.org/volume/564. Neural data is available through the public Brain-637 637

Score repo.638 638

Code Availability639 639

Our codes can be found at https://github.com/neuroailab/unsup vvs.640 640
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Figure 1: T-test results of neural predictivity results. If the neural predictivity of the method in the i-th
row is smaller than that of the method in the j-th column, the number in the i-th row and j-th column then
means the paired and two-tailed t-test p-value bewteen two methods. For V1, the degree of freedom is
165. For V4, the degree of freedom is 87. For IT, the degree of freedom is 167.
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Figure 2: Neural predictivity of DCNNs across layers.
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this area.
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Figure 5: Optimal stimuli for intermediate layers of DCNNs.
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Figure 6: Optimal stimuli for high layers of DCNNs. Best viewed when scaled.
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Figure 7: Neural predictivity results of ResNet-50 models.
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Figure 8: T-test results of human behavior consistency results (Fig 4d). If the human behavior consis-
tency of the method in the i-th row is smaller than that of the method in the j-th column, the number in
the i-th row and j-th column then means the unpaired and two-tailed t-test p-value bewteen two methods.
The degree of freedom is 2, as each model has three networks of different initializations.
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Figure 9: Schematic for the Mean Teacher (MT) method. In addition to the optimized “student DCNN”,
MT maintained a “teacher DCNN”, whose weights were running averages of the student DCNN. The
loss was the sum of the categorization loss on labeled images and the consistency loss between two
DCNNs on unlabeled images.
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Figure 10: Correlation of per-site neural predictivity results of different DCNNs.
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Figure 11: Training trajectories for (left to right): orientation selectivity measured by circular variance
on early layer of DCNNs, IT neural predictivity of best layer, object categorization, object position
predicting performance.
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