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Recently, growth in our understanding of the computations performed in both bi-
ological and artificial neural networks has largely been driven by either low-level
mechanistic studies or global normative approaches. However, concrete methodolo-
gies for bridging the gap between these levels of abstraction remain elusive. In this
work, we investigate the internal mechanisms of neural networks through the lens
of neural population geometry, aiming to provide understanding at an intermediate
level of abstraction, as a way to bridge that gap. Utilizing manifold capacity the-
ory (MCT) from statistical physics and manifold alignment analysis (MAA) from
high-dimensional statistics, we probe the underlying organization of task-dependent
manifolds in deep neural networks and macaque neural recordings. Specifically, we
quantitatively characterize how different learning objectives lead to differences in
the organizational strategies of these models and demonstrate how these geometric
analyses are connected to the decodability of task-relevant information. These anal-
yses present a strong direction for bridging mechanistic and normative theories in
neural networks through neural population geometry, potentially opening up many
future research avenues in both machine learning and neuroscience.

1. Introduction
Unsupervised learning, specifically unsupervised deep neural networks (DNNs), have become in-
creasingly prominent in the landscape of modern machine learning due to their ability to learn useful
statistics and representations unlabeled data. They provide advantages over classical supervised
DNNs in terms of cost, flexibility, and performances in various applications including image recogni-
tion [1], natural language processing [2], speech processing [3], and beyond. Despite this popularity,
we still lack an intuitive and mechanistic understanding of how these unsupervised models differ
from their supervised counterparts. Traditional performance metrics are limited because they focus
only on end performance, without opening the “black box” of DNNs.
Meanwhile, unsupervised neural networks have gained popularity in the neuroscience community
as promising models of the brain. Like biological neural networks, unsupervised DNNs can learn
useful information about inputs without relying on large amounts of labeled data. Furthermore,
previous work has found that unsupervised DNNs generate representations similar to the brain in
terms of prediction accuracy of neural data [4], and similar to those using supervised training [5].
However, these metrics are limited because they provide similar results for many different types of
models, and they can not explain why the certain models are more similar and what this similarity
means mechanistically in terms of task-performance.
In this work, we investigate these questions via a framework based on neural population geometry.
Our framework offers insights into why unsupervised approaches excel at certain tasks and could
lead to potential strategies for designing improved learning algorithms. Indeed, recent work has
demonstrated how such an intermediate understanding can facilitate robustness in self-supervised
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learning [6]. In parallel, a better understanding of the internal mechanisms of unsupervised DNNs
could potentially illuminate the underlying learning principles adopted by the brain [7], as well as
provide new ways to compare DNNs to the brain.

Neural population geometry and organization hypotheses. Neural population geometry [8] refers
to the study of the connection between the high-dimensional geometry of neural representations
(i.e., the collections of neural activities) and the underlying computations (e.g., task performance) [9,
10]. Through intuitive geometric and statistical quantitative measures (e.g., manifold classification
capacity, participation ratio, intrinsic dimension, etc.), it naturally serves as an intermediate language
to bridge high-level computational principles and detailed neural mechanisms.

Figure 1: (a) We measure geometrical properties of task-dependent manifolds from DNNs and
macaque brain neural recordings. (b) Potential strategies (Category-Performance Driven Hypothesis
and Latent Organization Driven Hypothesis) used to organize representations in neural networks.

We examine the organizations of neural representations to investigate the differences between distinct
learning paradigms in artificial and biological neural networks. Concretely, we study the following
two organization hypotheses in this paper: (i) the Category-Performance Driven Hypothesis and (ii)
the Latent Organization Driven Hypothesis. As illustrated in Figure 1(b), the former hypothesizes
that neural representations are organized in a way that makes the object manifolds easily separable
(a.k.a., untangling), while the latter hypothesizes that neural representations are organized accord-
ing to latent information in the stimuli (a.k.a., disentangling). We utilize several geometric and
quantitative tools to pinpoint the extent that each of these hypothesis manifest in supervised and
unsupervised learning algorithms as well as in recordings from macaque visual cortex.
An overview on our methods and results. Task-dependent manifolds refer to neural manifolds
that are associated with a certain computational task. In this work, we are interested in two types of
task-dependent manifolds: (i) the object manifold, which corresponds to the neural representations of
a stimuli in a classification task; (ii) the latent variation manifold, which corresponds to the neural rep-
resentations labeled with a latent feature in a regression task. We utilize Manifold Capacity Theory
(MCT) [11] and Manifold Alignment Analysis (MAA) to analyze the task-dependent manifolds of
supervised and unsupervised DNNs, as well as compare these representational properties to mani-
folds from macaque visual cortex. While MCT provides geometric and quantitative measures (e.g.,
manifold capacity, radius, and dimension) on object manifolds to understand the linear classification
performance of a neural network, MAA further investigates the organizations of multiple latent
variation manifolds by considering the manifold orientation and alignment. Armed with these new
geometrical viewpoints, we present the following findings:

• (The geometry of object neural manifolds) The representations of supervised and unsupervised
DNNs differ by their size, with supervised models achieving higher class manifold capacity by
shrinking their class manifolds to a greater extent than unsupervised models.
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• (The alignment across object manifolds) The object manifolds of unsupervised DNNs are more
aligned in the representational space then the object manifolds of supervised DNNs.

• (Decodability of task-related information from latent variation manifolds) Stronger manifold
alignment is associated with lower regression error, suggesting a potential advantage of learning
more aligned representations.

These findings together suggest that the unsupervised models and supervised DNNs differ in
their organizational strategies. Supervised DNNs have representation that are more specialized for
classification, displaying a higher degree of category-performance driven organization. On the other
hand, Unsupervised DNNs tend to show greater latent organization driven representations that can
that retain more general information about input stimuli.

2. Methods

2.1. Geometric and quantitative tools
We utilize quantitative measures from manifold capacity theory (MCT) and manifold alignment
analysis (MAA) as an intermediate layer of abstraction that connects the underlying computation
performed by neural networks to the geometry of neural representations. By examining these
macroscopic observables of the object manifolds, we quantitatively compare different learning
algorithms and investigate the organization hypotheses.

(a) MCT and relevant measures. (b) MAA (e.g., Bures).

Figure 2: (a) In MCT, we expect the radius and dimension of manifolds will decrease across neural
network layers. Meanwhile, we expect the classification capacity and the center correlation to
increase. This figure is an illustration of the intuitive picture of how the organization changes. (b)
The covariance alignment distance from Bures metrics is in analogous to the Wasserstein distance,
which intuitively captures the minimum cost to turn one distribution into another.

Manifold capacity theory (MCT) [11] uses tools and concepts from statistical physics to quantify
the linear classifiability of object manifolds. It has previously been used in the study of biological
neural networks [12, 13], deep learning models [8, 10, 14], and self-supervised learning [6]. The
resulting measure of manifold classification capacity, denoted αM , takes value between 0 and 2
where the higher the capacity, the more efficient the neural network is representing the object.
The derivation using replica method from theoretical physics further reveals that αM is linked to
two geometric quantities of the manifold, namely the anchor radius RM and the anchor dimension
DM . Specifically, αM can be approximated by (1 +R−2

M )/DM [11]. That is, the smaller the radius
and the dimension, the more efficient the neural representations are. We also adopt from MCT
the center correlation ρcenter, which measures how correlated the center locations of each object
manifold are. Concretely, high ρcenter would suggest that the manifolds are clustering in the neural
activity space. The intuitive picture of the quantitative measures discussed above are summarized in
Figure 2(a). We useMCT to probe how much neural networks utilize the category-performance
driven organizational hypothesis, i.e., higher classification capacity corresponds to a higher degree
of category-performance driven organization.
Manifold alignment analysis (MAA). MCT provides us with information on manifold capacity,
dimension, and radius from the perspective of a linear separability of the object manifolds. However,
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these properties might not capture the underlying latent organizations of manifolds. As such, we
propose additional metrics to complement the geometrical picture revealed by MCT. Specifically,
we measure how aligned manifolds are in the representational space to help us identify the extent
of latent organization in the representations (Figure 1b, bottom row). We useMAA to probe how
much neural networks utilize the latent-organization driven organizational hypothesis, i.e., higher
degree of alignment corresponds to a higher degree of latent-organization, as latent information
becomes more structured in the manifold representations. In the following we introduce two of the
main metrics used in MAA and leave the rest in the Appendices.
Covariance alignment distance from Bures metric. One approach to measuring manifold alignment is to
model each object manifold as a Gaussian distribution and measure the empirical covariance of the
object representations. Under this formulation, the empirical covariance describes the orientation of
the object manifold in the representational space., allowing us to use the distance between object
manifolds’ covarainces as a proxy for their alignment. Concretely, we use a variant of the covariance
term of the Bures metric to measure differences between object covariance distances. To measure
manifold alignment, we specifically compute the Bures covariance distance on the trace-normalized
object covariances to remove confounding factors (such as covariance scale) that could influence the
Bures metric. See Appendix B.2 for an in-depth discussion on the covariance alignment distance and
see Figure 2(b) for a pictorial illustration.
Signal mismatch distance from linear regression. We introduce the signal mismatch distance, a geometric
measure that captures the regression performance of manifold alignment. Formally, we model a
manifoldM as {(xM (θ, ψ), θ)}where xM (θ, ψ) is a neural representation parameterized by feature
value θ and in-manifold variability ψ. The least squares error of linearly regressing onM (without
the biased term, or equivalently, being mean centered) is

LSEM = ⟨θ2⟩M − (x̄M )⊤(CM )−1(x̄M )

where x̄M = ⟨[θ · xM (θ, ψ)⟩M and CM = ⟨xM (θ, ψ)(xM (θ, ψ))⊤⟩M and ⟨·⟩M refers to taking average
over the manifoldM . Here we are interested in two manifold A and B as well as their union A ∪B.
Finally, consider the difference between the least square error of the union of the two manifolds and
the average of the least square error of the two individual manifolds, we have(

LSEA + LSEB

2

)
− LSEA∪B =

1

2
(x̄A − x̄B)⊤(CA + CB)−1(x̄A − x̄B) (1)

+
1

2
(x̄A)⊤[(CA)−1 − 2(CA + CB)−1](x̄A) (2)

+
1

2
(x̄B)⊤[(CB)−1 − 2(CA + CB)−1](x̄B) . (3)

The above difference of least square errors captures the amount of signal alignment of the two mani-
folds. Meanwhile, under mild statistical assumptions, Equation 2 and Equation 3 are independent to
the signal correlations between the two manifolds. Namely, the information about signal alignment
of the two manifolds is fully contained in Equation 1. As this term naturally looks like a geometric
distance, we define the (normalized) signal mismatch distance between manifold A and B as

dsignal mismatch(A,B) =
(x̄A − x̄B)⊤(CA + CB)−1(x̄A − x̄B)

(x̄A)⊤(CA + CB)−1(x̄A) + (x̄B)⊤(CA + CB)−1(x̄B)
.

Signal mismatch distance is designed for probing local manifold properties generated by small
variations of latent parameters around each exemplar’s representation, so that irrelevant large-scale
nuisance variable would not dominate the signal. See Appendix B.3 for more discussions.
2.2. Models and datasets.
In this paper, we utilize a dataset consisting of images of three-dimensional objects overlayed on
top of a background image ([15], [16]). There are 64 different objects that can be grouped into 8
superclasses. In each of the images, the object is associated with 6 viewing parameters: size, position
(x and y), and rotation (x, y, and z). Examples images are shown in Figure 3.
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Figure 3: Examples images from the "bear" and "apple" object categories. As in [15], [16], each
image is composed of a 3D object overlayed on a background image. The 3D object has six variable
parameters: size, position (x and y), and rotation (x, y, and z).

We use this dataset to investigate the representations of a variety DNNs trained with different
algorithms. To control for model architecture, each of the DNNs we investigated used a ResNet-50
architecture [17], eliminating variation that would arise due to architecture differences. We explored
the following learning algorithms: Supervised, Supervised with random erase [18], Supervised
with random erase + random augment, Barlow Twins [19], DeepClusterV2 [20][21], SWAV [21],
SimCLR [22], PIRL [23], BYOL [24], VICreg [25]. Each of these models were trained on ImageNet
images [26]. For the figures in this paper, we aggregate the results from supervised and unsupervised
models. See Appendix B.5 for information on these models’ performance and sources.
Recordings from macaque visual cortex. We use macaque visual cortex recordings from V4 and IT
to this same set of images, using micro-electrode arrays with 96 electrodes per array being surgically
implanted into the brains of macaque monkeys. See [27] for more details on visual cortex recordings.

3. Results

3.1. Manifold capacity theory and the geometry of task-dependent manifolds

Figure 4: For each DNN, we extracted hidden representations of each image from the output of the
four ResNet blocks and the terminal average pool layer. Using these representations, we computed
the manifold capacity, radius, dimension, and center correlations across the layers of each DNNwith
MCT. We also analyzed on macaque brain recordings (dashed lines, error bars from bootstrap).
Supervised models achieve higher classification capacity by shrinking their neural manifolds.
Our first step in investigating the organizational structure of object manifolds in deep neural networks
was to probe the neural population geometry of object manifolds with MCT. As in Section 2.1, we
expect the neural manifolds to “shrink”, and this intuition is quantitatively characterized by the
results of measurements from MCT as shown in Figure 4, aggregated by model type.
MCT reveals differences in the representations learned by supervised models and unsupervised
models. Specifically, in the later layers of the DNNs we consistently see that the objects manifolds of
unsupervised models are larger in both radius and dimension, and exhibit a lower manifold capacity
than the supervised models. Interestingly, the center correlation is similar between both types of
models across the network layers.
The trends in manifold capacity, radius, and dimension together indicate that supervised and
unsupervisedmodels utilize different strategies to organize their representations. Supervisedmodels
learn representations with high capacity by shrinking the object manifolds in their representational
space, while unsupervised models learn object manifold representations that are larger and less
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compressed. With regards to the organizational hypotheses established in the introduction, these
results suggest that supervised DNNs exhibit a higher degree of category-performance driven
organization than unsupervised models do. These differences raise interesting questions. What are
the advantages and disadvantages of each organizational structure? Are supervised models learning
representations that are “overspecialized” to object classification?
Trends across macaque ventral visual stream match trends across model layers. We repeated the
MCT analysis described above for V4 and IT macaque neural recordings from to the same sets of
object images (Figure 4). We see that the trend in MCT metrics across the visual cortex matches the
trends we see across DNN layers (manifold capacity and center correlation increasing, manifold
radius and dimension decreasing). This suggests that the high level organizational strategy of DNNs
and the brains may be similar. Furthermore, we see that the terminal values of capacity, radius, and
dimension in the visual cortex (IT) are closer to the terminal values of the unsupervised DNNs
compared to supervised DNNs (average pool layer). This suggests that the brain, like unsupervised
models, does not compress object manifolds to the extent that supervised models do.

3.2. Manifold alignment analysis and the geometry of task-dependent manifolds
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Figure 5: (a) Unsupervised DNNs display greater manifold alignment than supervised DNNs at the
terminal average pool layer. For each model, we averaged the Bures covariance distance between the
8 super categories in our dataset to quantify how aligned the object manifolds were in each model.
We also repeat the experiment, but with shuffled manifolds (random partitioning). Measurements
on shuffled manifolds are unable to distinguish between unsupervised and supervised models. (b-c)
Task-dependent manifolds can capture meaningful structure in the representational space that is lost
in shuffled (random) manifolds without task-dependence.

The representations in unsupervised models are more driven by latent organization. The fact
that unsupervised models have larger object manifolds in terms of radius and dimension raised the
interesting question of how these models can achieve good classification performance despite their
larger manifolds. We realize that one way this could be archived is through aligning the manifolds
in order to use the representational space more efficiently, as shown by Wakhloo et al. [28]. Thus,
we decide to use MAA to investigate how aligned the object manifolds were in the representational
space in order to put the MCT measurements into context. The results are shown in Figure 5(a),
aggregated by model type (supervised and unsupervised). In Figure 5(b), we see results from the
same experiment, but with examples randomly shuffled between manifolds. In this scenario, we are
unable to see significant differences between supervised and unsupervised DNNs, demonstrating
the importance of task-relevant partitions when studying these geometrical properties.
The covariance distance and signalmismatch distancemeasurements indicate that the representations
of unsupervised models are more aligned than those of supervised models. With regards to the
organizational hypotheses established in the introduction, these results suggest that unsupervised
DNNs exhibit a higher degree of latent organization driven structure than supervised models do.
Could these more structured representations provide advantages?
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3.3. Relative manifold position and alignment analysis

Inspired by the discoveries in Section 3.1 , we next explore quantification of the similarity between
neural activity in higher-level areas of macaque visual cortex (V4 and IT) and unsupervised vs.
supervised DNNs by computing RSA-style comparisons. However, instead of using pairwise dis-
tances between individual exemplar responses, we use pairwise distances computed based on
task-dependent elements (category manifold centers or category manifold covariances). We find
that the geometrical properties of macaque neural recordings are consistently more similar to unsu-
pervised DNNs than supervised DNNs. However, note that these results don’t show that the brain
utilizes unsupervised learning objectives. Rather, these experiments show that the organizations of
representations in unsupervised DNNs more resemble those in the brain by these metrics.
Unsupervised models position object manifolds more similarly to macaque visual cortex. We
begin by investigating the similarity between the relative positions of the object manifolds in the
macaque visual cortex and in the DNNs. For the neural responses in visual cortex and each of the
DNNs, we compute the centers of each of the object manifolds. Using these center locations, we
compute a center correlation matrix. We correlate the off-diagonal entries of the matrices for the
biological areas with those of the DNNs to measure similarity in relative object manifold positions.
The results displayed in Figure 6(a) show that the representations of unsupervised DNNs are more
similar to themacaque visual cortex in terms of object manifold positions. Furthermore, the similarity
between the IT and DNN representations increases across the layers of the DNNs.
Unsupervised models orient category manifolds more similarly to macaque visual cortex. We
next use a similar approach to explore a different attribute of the object manifolds: their orientation.
Specifically, we compute the pairwise alignment between object manifolds (as described above) for
the visual cortex and each of the DNNs to measure the orientations of the manifolds relative to each
other. We then correlate the off-diagonal entries of these matrices to measure similarity in pairwise
manifold alignment between the visual cortex recordings and DNNs. The results are displayed in
Figure 6(b). Again, we find that the representations in the macaque visual cortex are more similar
to unsupervised DNNs. These results can be interpreted as follows: two manifolds that are more
aligned in the macaque visual cortex are also more aligned in the unsupervised DNNs.
RSA is unable to distinguish different types of models. Previously, RSA has been employed as a
method to compare the similarity of DNN representations and neural recordings. In Figure 6(c),
we demonstrate that merely performing RSA on pairwise distances, without any task-dependence,
results in similar neural similarity scores for both supervised and unsupervised DNNs. This is
unlike the outcomes observed with our proposed methods. The results underscore the importance
of studying task-relevant manifolds, as opposed to responses to individual stimuli.
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Figure 6: (a) The relative positions of neural object manifolds are more similar to unsupervised
DNNs than supervised DNNs. Higher correlation means greater similarity to macaque neural
recordings. (b) The relative orientations of neural object manifolds are more similar to unsupervised
DNNs than supervised DNNs. (c) RSA on stimuli pairwise-distances (no task-dependence) is
unable to separate the supervised and unsupervised DNN types.
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3.4. Manifold alignment and regression performance
To investigate potential benefits of more structured representations, we next seek to examine the
relationship between object manifold alignment and regression performance. To achieve this, we
generate object images that varied only in one of the six viewing parameters (described in Section 2.2)
to eliminate any confounding variance, and yielded latent variation manifolds (around each exem-
plars). Then, we utilize several quantitative measures to perform a correlation analysis to probe the
potential connection between computation and geometry in the context of regression.
For each DNN, we calculate four quantities for each pair of object manifolds (average pool layer): (i)
manifold covariance distance, which measures the degree of alignment of the covariance structures
of the two manifolds (Section 2.1); (ii) cross-regression performance, defined as the R2 achieved
from training a linear regression model on one latent variation manifold around an exemplar and
evaluating on another; (iii) regression performance mismatch, defined as the difference between the
least squares error of the union of the twomanifolds and the average of the least squares error of each
manifold; and (iv) signal mismatch distance, a new distance measure we propose to quantify the
regression performance (Section 2.1). While (i, ii) capture the geometry and regression performance
of the manifolds respectively, (iii) and (iv) serve as quantitative measures bridging these two aspects.
We hypothesize that the more geometrically similar the two manifolds are, the better the regression
performance will be. This high-level hypothesis leads to four quantitative predictions based on the
aforementioned measures, as summarized in Figure 7. We found affirmative results for three out
of four predictions while the failure of covariance distance positively correlating with regression
performance mismatch suggests that the signal mismatch distance unveils additional computational
properties of the manifolds. These findings advocate that manifold geometry may be associated
with regression performance and warrant future studies.

Figure 7: We had predicted that both the manifold covariance distance and the signal mismatch
distance would negatively correlate with the cross-manifold regression performance and positively
correlate with the regression performance mismatch. It turns out that, except for the manifold
covariance distance, which does not positively correlate with the regression performance mismatch
(i.e., (b)), all the other predictions (i.e., (a), (c), and (d)) are supported by the results from analyzing
the terminal average pool output of eachDNN.We interpret the failure of prediction (b) as suggesting
the signal mismatch distance could provide extra computational information.
4. Related Work
Geometric analysis in neural networks. Previous work has utilized geometrical properties to
investigate the internal mechanisms of DNNs and explain computational performance. Ansuini
et al. [9] show that lower intrinsic dimension of object manifolds is associated with increased
generalization performance. Cohen et al. [10] use MCT to study the way neural geometry and
classification capacity change across DNN layers, and how different layers of the network can
influence these properties. Yerxa et. al [6] show that training DNNs to optimize these geometrical
properties can result in good classification performance. These results demonstrate the power of
using geometrical tools to explain computational properties of neural networks.
Comparing biological and artificial neural networks. Another area of previous work has been in
comparing DNNs to neural recordings to uncover which learning algorithms are most like the brain.
Brain-Score [29] quantifies similarity to the brain based on PLS regression scores. DNNs are scored
by their ability to predict biological neural responses to the same stimulti. Previous work [4] has
used these metrics to compare DNNs to brain recordings, but these metrics are unable to provide
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information about the organization of representations, which we believe to be crucial to understand-
ing underlying mechanisms. Another method that has been used to compare computational models
and biological neural responses is representational similarity analysis, RSA [30], which compares
representations by computing correlations between "dissimilarity" matrices. However, recent stud-
ies have shown that these types of similarity measures have potential issues [31]. Thus, further
theoretical justifications are needed to show how these metrics could bridge the representations to
computational properties of interest, e.g., classification and regression performance.
Training objectives. Previous works have examined why certain training objectives yield better
performance or generalizability, using both theoretical and empirical approaches [32–37]. Kornblith
et al. [34] investigated the connection between loss functions, regularizers, and test accuracy in image
classification tasks, observing that better class separability is associated with representations that are
less transferable. While these studies focus more on end-performance and/or geometry in parameter
space, our work complements the landscape through a geometric analysis of object representations.
Disentangled representations. Disentanglement, sometimes known as factorization, is a central
theme in the study of neural representations. There have been efforts from bothmachine learning [38–
40] and neuroscience perspectives [41, 42] to understand and quantify the role of disentangled (or
factorized) representations. For example, β-VAEs [38] and their variants utilize information theory to
encourage factorized latent distributions. Eastwood et al. [39] propose a quantitative framework for
gauging the degree of disentanglement when the ground-truth latent structure is accessible. On the
biological front, Whittington et al. [41] explore disentanglement through biological and normative
constraints. As discussed by Locatello [43], the study of disentanglement requires insights into the
inductive biases of the data, tasks, and models. While this work does not directly tackle the problem
of disentanglement, we believe geometric approaches would lead to insightful understandings.

5. Conclusion and Discussion
In this study, we utilize Manifold Capacity Theory (MCT) and Manifold Alignment Analysis (MAA)
to explore the neural population geometry of artificial and biological neural networks. Unlike tra-
ditional comparisons of different DNNs, which primarily focus on end performance rather than
internal mechanisms, we demonstrate that geometric analyses at the representation level can re-
veal differences in the organizational strategies of DNNs with distinct objectives (supervised and
unsupervised DNNs). Our findings indicate that these geometric properties are associated with
computational properties of interest, such as regression performance.
While we utilize several quantitative tools to probe the organizational strategies of neural networks,
some of the underlyingmechanisms remain open. MCT currently focuses on the geometric properties
of a single manifold and hence we develop MAA to complement the aspect of the relations across
manifolds. Unlike MCT, which directly connects general geometrical properties to the efficiency
of downstream computations, MAA addresses only a fraction of the picture. Nevertheless, these
limitations open up numerous research questions for future work as described below.
On the theoretical side, a natural follow-up direction is to further develop rigorous connections
between geometry and regression performance. In this paper, we formally motivate alignment
measurements in local settings using signal mismatch distance, and we observe a striking association
between alignment and regression performance in real data. A rigorous theory applicable to global
manifolds linking geometry to regression performance would open many new doors for innovation
in model development and understanding, just as MCT did with classification [6]. On the machine
learning side, we show manifold alignment is associated with regression performance; are there
other benefits? As mentioned before, manifold alignment has been connected with task-relevant
properties such as capacity [28]. Is it possible that increased manifold alignment can explain
other phenomena of unsupervised DNNs, such as improved performance in certain areas and the
effectiveness of pretraining? A deeper understanding of how these geometrical properties influence
DNNperformancewould be a significant asset for understandingwhyDNNswork. On the biological
side, these findings also present new avenues for the neuroscience community to study the differences
between how DNNs and the brain learn through geometrical perspectives. For exmaple, can we
extend these metrics to reveal similarities and differences between different DNNs and the brain?
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A. The Quantitative Measures Used in this Paper

Quantitative Measures Properties Relevant Sections

MCT
Classification capacity αM Classification Section 2.1, 3.1
Anchor radius RM Geometry + Classification Section 2.1, 3.1
Anchor dimension DM Geometry + Classification Section 2.1, 3.1
Center correlation ρcenter Geometry Section 2.1, 3.1

MAA
Covariance alignment distance Geometry + Regression* Section 2.1, 3.2, 3.4
PCA distance Geometry + Regression* Section 2.1, 3.2, 3.4
Signal mismatch distance Geometry + Regression Section 2.1, 3.2, 3.4
Relative geometry analysis Geometry Section 3.3

Table 1: A summary of the quantitative measures used in this paper. “Regression*” refers to the
measure being correlated with regression performance empirically.

B. Technical Details

B.1. MCT
LetM be an object manifold. M could be empirically estimated from a neural network or a purely
analytical model. The classification capacity ofM is defined as follows. Let N be the number of
neurons. For each positive integerP , we randomly pick the centers and coordinates forP independent
copies of manifoldM in RN , denoted asMµ for µ = 1, 2, . . . , P . Next, we randomly assign ±1 label
to each copy independently and denote it as yµ. Intuitively, the higher the P is, the less easy to have
a linear classifier to separate all these manifolds according to their labels. Concretely, the probability
(over the randomness of picking centers, coordinates, and labels for each manifold) of separability
has a sharp phase transition with respect to P and the classification capacity is hence defined as the
ration αM = P/N where P is the phase transition point.
In [11], Chung, Lee, and Sompolinsky used techniques from replica theory to derive an analytical
expression for the capacity αM in terms of the geometric properties of the manifoldM . In particular,
they showed that αM ≈ (1+R−2

M )/DM where RM andDM are anchor radius and anchor dimension
ofM . That is, the classification capacity and these quantities from anchor geometry serve as a bridge
between the computational and representational aspect of neural manifolds. See [11] for more
details.

B.2. Covariance alignment distance as a measure of alignment
We propose measuring the alignment of covariances using a modified version of the traditional Bures
metric [44], which has been shown to be a robust way to compare positive-semidefinite matrices.
More importantly, it has been shown that the Bures metric can be used to compare the geometry of
covariances of neural populations [45].
In it’s general form, the Bures metric between two covariances A and B can be defined as

d(A,B) = Bures(A,B) = Procrustes(A1/2, B1/2) =
√
Tr(A) + Tr(B)− 2∥A1/2B1/2∥∗ (4)

where ∥.∥∗ denotes the nuclear norm.
This metric; however, generally compares the shapes of two covariances according to a combination
of their alignment in orientation (shape) and magnitude of variability (size). For the purposes of
this work, we specifically want to understand the component of covariance similarity due to shape
alignment, irrespective of size. This is because individual object manifolds may represent latent
factors with different degrees of variability, but we would like to understand if in a high-dimensional
space, two representations are projecting latent factors into aligned axes of variability irrespective
of the size. There are many ways to normalize by magnitude of individual covariances to remove

14



the "size" component. Specifically, we propose evaluating the Bures metric over trace-normalized
covariances and show that this distance is scale-invariant as desired:

d′(A,B) = d

(
A

Tr(A)
,

B

Tr(B)

)
=

√
2− 2∥A1/2B1/2∥∗

(Tr(A1/2) Tr(B1/2))

(5)

Proposition 1. For any two positive definite matrices A and B: d′(sA,B) = d′(A,B)for an arbitrary scalar
s.

.

Proof.

d′(sA,B) =

√
2− 2∥(sA)1/2B1/2∥∗

(Tr(sA) Tr(B))

=

√
2− 2s1/2∥A1/2B1/2∥∗

(s1/2Tr(A1/2) Tr(B1/2))

=

√
2− 2∥A1/2B1/2∥∗

(Tr(A1/2) Tr(B1/2))

= d′(A,B)

(6)

B.3. Signal mismatch distance
In this subsection, we start with motivating the definition of signal mismatch distance by analytically
deriving the regression performance mismatch, i.e., the difference between the least squares error
of the joint manifold and the average of the least squares error of the individual manifolds. Next,
we examine the mathematical properties of the signal mismatch distance and relevant physical
interpretations. Finally, we consider a generative model for investigating the properties of the signal
mismatch distance through numerical simulations.

B.3.1. Regression performance mismatch

Recall that we model a manifold M as {(xM (θ, ψ), θ)} where xM (θ, ψ) is a neural representation
parameterized by feature value θ and in-manifold variability ψ. The least squares error of a regressor
w is ⟨(w⊤xM (θ, ψ)− θ)2⟩M and the first order derivative with respect to w is

2⟨xM (θ, ψ)(xM (θ, ψ))⊤w − θ · xM (θ, ψ)⟩M = 2CMw − 2x̄M

where x̄M = ⟨[θ · xM (θ, ψ)⟩M and CM = ⟨xM (θ, ψ)(xM (θ, ψ))⊤⟩M and ⟨·⟩M refers to taking average
over the manifold M . Namely, the optimal linear regressor of M (without the biased term, or
equivalently, being mean centered) is

wM = (CM )−1x̄M

and the least squares error is
LSEM = ⟨θ2⟩M − (x̄M )⊤(CM )−1(x̄M ) .

Now, we consider three settings: manifold A, manifold B, and manifold A ∪B. The least squares
errors are the following respectively.

LSEA = ⟨θ2⟩A − (x̄A)⊤(CA)−1(x̄A)

LSEB = ⟨θ2⟩B − (x̄B)⊤(CB)−1(x̄B)

LSEA∪B = ⟨θ2⟩A/2 + ⟨θ2⟩B/2− (x̄A + x̄B)⊤(CA + CB)−1(x̄A + x̄B)/2
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where the last equation holds due to x̄M = ⟨θ·x(θ, ψ)⟩A∪B = ⟨θ·x(θ, ψ)⟩A/2+⟨θ·x(θ, ψ)⟩B/2 = x̄A/2+
x̄B/2 and ⟨x(θ, ψ)(x(θ, ψ))⊤⟩A∪B = ⟨x(θ, ψ)(x(θ, ψ))⊤⟩A/2+⟨x(θ, ψ)(x(θ, ψ))⊤⟩B/2 = CA/2+CB/2.
Thus, we arrive Equation 1, Equation 2, and Equation 3 as presented in Section 2.1.

B.3.2. Properties of the (normalized) signal mismatch distance

As discussed in Section 2.1, the first term (i.e., Equation 1) in the regression performance mismatch
(i.e., LSEA/2 + LSEB/2− LSEA∪B) motivates the definition of the signal mismatch distance. In
the main text, we focus on the normalized signal mismatch distance defined as

dsignal mismatch(A,B) =
(x̄A − x̄B)⊤(CA + CB)−1(x̄A − x̄B)

(x̄A)⊤(CA + CB)−1(x̄A) + (x̄B)⊤(CA + CB)−1(x̄B)
.

As a remark, in this work we focus on the normalized signal mismatch distance because it nicely
serves as a certain “signal-to-correlation ratio” as justified later.
Let us start with enumerating some basic properties of the (normalized) signal mismatch distance.
Proposition 2. For every manifold A and B, the following properties hold.

1. 0 ≤ dsignal mismatch(A,B) ≤ 2.

2. dsignal mismatch(A,A) = 0.

3. dsignal mismatch(A,−A) = 2.

4. dsignal mismatch(A,B) = dsignal mismatch(cA, cB) for every c ∈ R where cM = {(c · xM (θ, ψ), θ)}.

5. dsignal mismatch(A,B) = dsignal mismatch(A(c), B(c)) for every c ∈ RwhereM(c) = {(xM (θ, ψ), c ·θ)}.

6. If manifold A and B are independent, i.e., the subspace spanned by {xA} and the subspace spanned
by {xB} only intersect at the origin, then dsignal mismatch(A,B) = 1.

Proof.

1. By the fact that (CA + CB) is positive semidefinite, we know that the numerator and the
two terms in the denominator of the normalized signal mismatch distance are non-negative.
Next, expand , we have

(x̄A ± x̄B)⊤(CA + CB)−1(x̄A ± x̄B)

= (x̄A)⊤(CA + CB)−1(x̄A) + (x̄B)⊤(CA + CB)−1(x̄B)± 2(x̄A)⊤(CA + CB)−1(x̄B) .

By the non-negativity of the above equation(s), we have
|2(x̄A)⊤(CA + CB)−1(x̄B)| ≤ (x̄A)⊤(CA + CB)−1(x̄A) + (x̄B)⊤(CA + CB)−1(x̄B)

Thus, we conclude that 0 ≤ (x̄A− x̄B)⊤(CA+CB)−1(x̄A− x̄B) ≤ 2(x̄A)⊤(CA+CB)−1(x̄A)+
2(x̄B)⊤(CA + CB)−1(x̄B) and hence the normalized signal mismatch distance takes value
within 0 and 2.

2. As the numerator of the normalized signal mismatch distance is 0, we conclude that the
normalized signal mismatch distance between A and itself is 0.

3. As the numerator of the normalized signal mismatch distance is 4(x̄A)⊤(CA +CB)−1(x̄A) +
4(x̄B)⊤(CA+CB)−1(x̄B , we conclude that the normalized signal mismatch distance between
A and −A is 2.

4. As (uniformly) scaling the activity patterns by a factor of cwill incur a factor of 1/c2 in both
the numerator and the denominator, the normalized signal mismatch distance won’t change.

5. As (uniformly) scaling the stimulus value by a factor of c will incur a factor of c2 in both the
numerator and the denominator, the normalized signal mismatch distance won’t change.

16



6. Note that when the subspace spanned by {xA} and the subspace spanned by {xB} only
intersect at the origin, we have (CA + CB)−1 = (CA)−1 + (CB)−1. Thus, we have (i)
(x̄A−x̄B)⊤(CA+CB)−1(x̄A−x̄B) = (x̄A)⊤(CA)−1(x̄A)+(x̄B)⊤(CB)−1(x̄B), (ii) (x̄A)⊤(CA+
CB)−1(x̄A) = (x̄A)⊤(CA)−1(x̄A), and (iii) (x̄B)⊤(CA + CB)−1(x̄B) = (x̄B)⊤(CB)−1(x̄B).
Putting everything together, we have that the signal mismatch distance between A and B is
1.

The above proposition suggests that the (normalized) signal mismatch distance can be served as a
measure ranging from 0 to 2whereas (i) 0means the two manifolds are completely aligned; (ii) 1
suggests the two manifolds are independent; (iii) 2means that the two manifolds are completely
misaligned. To sum up, the lower the (normalized) signal mismatch distance, the more correlated
the two manifolds in their organization to represent the latent feature.

B.3.3. Sufficient conditions for the signal mismatch distance capturing regression performance
mismatch

Next, we would like to justify that the signal mismatch distance term (i.e., Equation 1) captures the
regression performance mismatch when the manifolds satisfy certain sufficient conditions.
Rotational symmetry. The simplest way to represent an object is using a low-dimensional
ball/sphere. So here we study the signal mismatch distance in this toy setting as a sanity check. In
fact, we consider a slightly more general scenario where a manifold enjoys rotational symmetry in
the sense that the manifold is rotational symmetric in the subspace of active neurons.
Proposition 3. Suppose both manifold A and manifold B have rotational symmetry and manifolds A′, B′

have the same collections of activity patterns as manifoldsA,B. If the stimulus representation is also rotational
symmetric within each manifold, then

E
(A,B)

[(
LSEA + LSEB

2

)
− LSEA∪B − (x̄A − x̄B)⊤(CA + CB)−1(x̄A − x̄B)

]
= E

(A′,B′)

[(
LSEA′

+ LSEB′

2

)
− LSEA′∪B′

− (x̄A
′
− x̄B

′
)⊤(CA′

+ CB′
)−1(x̄A

′
− x̄B

′
)

]
where the randomness in the above equation is the direction of encoding the stimulus θ.

Proof. Let SA, SB ⊂ [n] = {1, · · · , n} be the set of active neurons of manifold A and B respectively
where n is the number of neurons. Let nA = |SA|, nB = |SB |, and nA∩B = |SA ∩ SB |. In this case,
both CA and CB are an identity matrix for a subspace in Rn. Let us reindex the neurons so that
SA = {1, 2, . . . , nA} and SB = {nA − nA∩B + 1, . . . , nA + nB − nA∩B} so that

CA =

I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

 , CB =

0 0 0 0
0 I 0 0
0 0 I 0
0 0 0 0

 , CA + CB =

I 0 0 0
0 2I 0 0
0 0 I 0
0 0 0 0

 .

Notice that if manifold pair (A,B) and (A′, B′) have the same collections of activity patterns, then
CA = CA′ and CB = CB′ .
Next, the residual of the difference between regression performance mismatch and the (unnormal-
ized) signal mismatch distance has the following expression:(

LSEA + LSEB

2

)
− LSEA∪B − (x̄A − x̄B)⊤(CA + CB)−1(x̄A − x̄B)

=
1

2
(x̄A)⊤[(CA)−1 − 2(CA + CB)−1](x̄A) +

1

2
(x̄B)⊤[(CB)−1 − 2(CA + CB)−1](x̄B) .
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For convenience, we denote Ĉ1 = (CA)−1− 2(CA+CB)−1 and Ĉ2 = (CB)−1− 2(CA+CB)−1. Note
that Ĉ1 and Ĉ2 are deterministic. Finally, as the stimulus representation within each manifold is also
roational symmetric, we have that

E
(A,B)

[
(x̄A)⊤[(CA)−1 − 2(CA + CB)−1](x̄A)

]
= E

(A,B)

[
(x̄A)⊤Ĉ1(x̄

A)
]

= E
(A′,B′)

[
(x̄A

′
)⊤Ĉ1(x̄

A′]
= E

(A′,B′)

[
(x̄A

′
)⊤[(CA′

)−1 − 2(CA′
+ CB′

)−1](x̄A
′
)
]

and similarly for the B and B′ term.
We conclude that the two manifold pairs have the same residual of the difference between regression
performance mismatch and the (unnormalized) signal mismatch distance in expectation.

The above proposition can be interpreted as follows. In the simplest non-trivial scenario where the
two manifolds are both rotational symmetric, then the residual of the difference between regression
performance mismatch and the (unnormalized) signal mismatch distance would not contain any
information about the correlation of the latent organization of the two manifolds.
Matching stimulus marginals. Before we formally state the result, let us first set up the concept of
am ensemble pair of manifolds. Mathematically, we say (A,B) is an ensemble pair of manifolds if it is a
distribution of two manifolds (A,B)with fixed collections of activity patterns whereas the associated
stimulus value θ has the same marginal distribution. Physically, this corresponds to invariant
representations for two object classes where the underlying latent structures are undetermined. Now,
we are able to state the result regarding the connection between signal mismatch distance and the
regression performance mismatch in the following proposition.
Proposition 4. Consider two ensemble pair of manifolds (A,B) and (A′,B′) with the same collections of
activity patterns and the same marginal distributions for the stimulus, then we have

E
(A,B)∼(A,B)

[(
LSEA + LSEB

2

)
− LSEA∪B − (x̄A − x̄B)⊤(CA + CB)−1(x̄A − x̄B)

]
= E

(A′,B′)∼(A′,B′)

[(
LSEA′

+ LSEB′

2

)
− LSEA′∪B′

− (x̄A
′
− x̄B

′
)⊤(CA′

+ CB′
)−1(x̄A

′
− x̄B

′
)

]
.

Proof. First, the residual of the difference between regression performance mismatch and the (un-
normalized) signal mismatch distance has the following expression:(

LSEA + LSEB

2

)
− LSEA∪B − (x̄A − x̄B)⊤(CA + CB)−1(x̄A − x̄B)

=
1

2
(x̄A)⊤[(CA)−1 − 2(CA + CB)−1](x̄A) +

1

2
(x̄B)⊤[(CB)−1 − 2(CA + CB)−1](x̄B) .

Next, as the two ensemble pairs (A,B) and (A′,B′) share the same collections of fixed activity patterns,
we haveCA = CA′ andCB = CB′ . Moreover, as the two ensemble pairs also share the samemarginal
distribution (of the stimulus θ), we also have E[f(x̄A, x̄B)] = E[f(x̄A

′
, x̄B

′
)] for any function f . Thus,

we have
1

2
(x̄A)⊤[(CA)−1 − 2(CA + CB)−1](x̄A) +

1

2
(x̄B)⊤[(CB)−1 − 2(CA + CB)−1](x̄B)

=
1

2
(x̄A

′
)⊤[(CA′

)−1 − 2(CA′
+ CB′

)−1](x̄A
′
) +

1

2
(x̄B

′
)⊤[(CB′

)−1 − 2(CA′
+ CB′

)−1](x̄B
′
) .

We conclude that the two ensemble pairs have the same residual of the difference between regression
performance mismatch and the (unnormalized) signal mismatch distance.
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The above proposition can be interpreted as follows. An ensemble pair of manifolds corresponds
to a (mathematical) model for how a neural network represent two potentially correlated concepts
with a shared latent feature. The two assumptions (fixed activity patterns and matching marginals)
correspond to the empirical observations/representations one can record from the neural network.
Note that there could be many ensemble pairs of manifolds having the same collections of activity
patterns and marginal distributions, while some of them might have correlated latent structure
(across manifolds), and some might not. The above proposition essentially says that the residual of
the difference between regression performance mismatch and the (unnormalized) signal mismatch
distance would not contain information about the correlation between the two manifolds.

B.3.4. A generative model and numerical simulations

In this subsection we define and investigate a synthetic model and its variants to understand the
properties of the signal correlation mismatch distance.
Let n be the number of neurons and let m be the number of points in each manifold. Also, let
τ ∈ [0, 1] be a correlation parameter and let ϵ ≥ 0 be a noise parameter. We generate the sample
points and features of each manifold via the following process.

1. Randomly samplem independent points from the n-dimensional Gaussian distribution with
mean 0 and covariance I . Collect these points into manifold A.

2. Generate the points in manifold B using the same procedure.
3. Randomly sample an unit vector wA in Rn.
4. Randomly sample another unit vector w in Rn and let wB be the unit vector in the direction

of (1− τ)wA + τw where τ ∈ [0, 1] is a parameter representing the correlation between the
two manifolds.

5. For each point x in the manifold A (resp. B), associate it with feature value θ = w⊤
Ax +

ϵξ (resp. θ = w⊤
Bx + ϵξ) where ξ is a noise term sampled from the standard Gaussian

distribution.

We measure the (normalized) signal correlation mismatch distance of the above generative models
and plot the results in Figure 8.

Figure 8: Simulations withm = 50, n = 50, 60, 70, 80, 90, 100, ϵ = 0.05, and τ = 0, 0.1, 0.2, . . . , 1.

Intuitively, the smaller the τ is, the more aligned the twomanifolds are. Namely, we expect to see that
the signal correlation mismatch distance grows as τ goes from 0 to 1 and indeed that’s what happen
in the numerical simulations as shown in Figure 8. Next, the increase in distance with respect to
the growth of the number of neurons is a result of insufficient number of samples, which we will
address in the following.
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Manifolds coming from lower dimensional subspaces The previous simulation suggests that
when the ambient dimension n (i.e., the number of neurons) is much greater than the number of
samplesm, then we would not have enough points to estimate the distance correctly because the
manifold dimension is intrinsically n. Meanwhile, in real data, we would expect the manifolds
having a low intrinsic dimension and/or even overlap with each other in some subspaces. So here
we consider a variant of the above generative model to reconcile these issues. Let dM be a parameter
for the dimension of each manifold and let dover be a parameter for the dimension of the overlapped
subspace of the two manifolds.

1. Randomly samplem independent points from the dM -dimensional Gaussian distribution
with mean 0 and covariance I in the n-dimensional ambient space. Collect these points into
manifold A.

2. Generate the points in manifold B using the same procedure while randomly picking a
dover-dimensional subspace from manifold A into the subspace of manifold B.

3. Randomly sample an unit vector wA in Rn.

4. Randomly sample another unit vector w in Rn and let wB be the unit vector in the direction
of (1− τ)wA + τw where τ ∈ [0, 1] is a parameter representing the correlation between the
two manifolds.

5. For each point x in the manifold A (resp. B), associate it with feature value θ = w⊤
Ax +

ϵξ (resp. θ = w⊤
Bx + ϵξ) where ξ is a noise term sampled from the standard Gaussian

distribution.

We numerically simulate different choices of overlapped dimension and plot the signal correlation
mismatch distance as well as the regression loss in Figure 9.

Figure 9: Simulations with m = 50, n = 100, ϵ = 0.05, τ = 0, 0.1, 0.2, . . . , 1, dM = 30, dover =
15, 20, 25, 30.

Intuitively, we expect the distance to be smaller when the twomanifolds overlapwith each other more.
And this is confirmed in Figure 9(a). Moreover, we postulated earlier that the signal correlation
mismatch distance will positively correlates with the regression loss (i.e., the loss of optimal regressor
for both manifolds). Indeed we confirm this connection in the generative model as shown in
Figure 9(b).
To sum up, we design a generative model of correlated manifolds with an 1D latent structure and test
the (normalized) signal mismatch distance. Both Figure 8 and Figure 9 suggest that the (normalized)
signal mismatch distance captures the latent correlation across the two manifolds as well as explains
the regression performance mismatch as expected.
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B.4. Cross-Regression Performance Additional Details
As mentioned in Section 3.4, the cross-regression performance is R2 achieved from training a linear
regression model on one latent variation manifold around an exemplar and evaluating on another.
More formally, the cross-regression performance from manifold A to manifold B is obtained via the
following procedure:

• Train a ridge regression model (linear regression with L2-normalization) on a manifold A.
• Evaluate the R2 of the ridge regression model on manifold B.

The resulting R2 value is the cross-regression performance from A to B.

B.5. Model details
Model ImageNet Top-1 Accuracy (%) Source

Supervised 76.15 Torchvision
Supervised-RE 78.47 PyTorch Image Models [46]

Supervised-RARE 78.81 PyTorch Image Models
Barlow Twins 73.5 Facebook Research (PyTorch Hub)

SwAV 75.3 Facebook Research (PyTorch Hub)
VICReg 73.2 Facebook Research (PyTorch Hub)

DeepClusterV2 75.18 Facebook Research (VISSL)
SimCLR 68.8 Facebook Research (VISSL)
PIRL 64.29 Facebook Research (VISSL)
BYOL 74.6 DeepMind & PyTorch Conversion 2

All models used a ResNet-50 architecture.

2https://github.com/ajtejankar/byol-convert
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B.6. Deaggregated results
B.6.1. MCT Results

Figure 10: As in Figure 4 we extracted the hidden representations of each image from the output
of the four ResNet blocks in each model, and the terminal average pool layer and computed the
manifold capacity, radius, dimension, and center correlations across the layers of the DNNs. We also
performed MCT analysis on macaque brain recording (dashed lines).

B.6.2. MAA Results

Figure 11: As in Figure 5, we averaged the trace-normalized Bures covariance distance between the 8
super category manifolds in our dataset to quantify how aligned the object manifolds were in each
model. We also repeat the experiment, but with shuffled manifolds (random partitioning).
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B.6.3. Neural Comparison (Relative Analysis) Results

(a) Position similarity

(b) Alignment similarity

(c) RSA

Figure 12: Deaggragated results of Figure 6, showing similarity to macaque neural data. RSA fails to
provide consistent trends when comparing supervised to unsupervised models.

B.7. Code and Compute

The code used for new experiments will be released to the public. The
code used for Manifold Capacity Theory (MCT) analysis was obtained from:
https://github.com/schung039/neural_manifolds_replicaMFT
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These experiments were run on a computing cluster with about 1000 multicore nodes with up to
1TB of memory each. GPUs were not used in these experiments.
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