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Abstract

Inferences made about objects via vision, such as rapid and accurate cate-
gorization, are core to primate cognition despite the algorithmic challenge
posed by varying viewpoints and scenes. Until recently, the brain mecha-
nisms that support these capabilities were deeply mysterious. However, over
the past decade, this scientific mystery has been illuminated by the discovery
and development of brain-inspired, image-computable, artificial neural net-
work (ANN) systems that rival primates in these behavioral feats. Apart from
fundamentally changing the landscape of artificial intelligence, modified ver-
sions of these ANN systems are the current leading scientific hypotheses of
an integrated set of mechanisms in the primate ventral visual stream that sup-
port core object recognition. What separates brain-mapped versions of these
systems from prior conceptual models is that they are sensory computable,
mechanistic, anatomically referenced, and testable (SMART). In this arti-
cle, we review and provide perspective on the brain mechanisms addressed
by the current leading SMART models. We review their empirical brain
and behavioral alignment successes and failures, discuss the next frontiers
for an even more accurate mechanistic understanding, and outline the likely
applications.
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1. INTRODUCTION

Primates can rapidly infer and report multiple details about real-world objects in their field of
view, despite the potentially infinite variation that an image of an object might present to the eyes
(Rajalingham et al. 2015, 2018). How does this work?

A decade ago, experimental neuroscientists had already successfully probed the primate brain’s
visual processing pathways to identify a series of brain areas implicated in object identity and cat-
egory inferences. These capabilities are commonly referred to as object recognition (for a review,
see DiCarlo et al. 2012). In particular, prior work had demonstrated the central role of the ventral
visual cortical stream for processing the visual input at the center of gaze to support object recog-
nition behaviors (Ungerleider et al. 1982). In addition, neural recordings at the highest level of
the primate ventral visual stream (Hung et al. 2005, Logothetis et al. 1995, Majaj et al. 2015) had
demonstrated the neural population solution of primates’ remarkable object recognition capabil-
ities. Furthermore, anatomically constrained, specialized circuits had been discovered that exhibit
selectively for specific visual objects and image statistics (Gross etal. 1972, Op de Beeck et al. 2001,
Tanaka 1996). For instance, a population of neurons in the inferior temporal (IT) cortex that is
more responsive to faces compared to other objects (Kanwisher et al. 1997, Tsao et al. 2006) was
causally linked to face perception (Parvizi et al. 2012). Similarly, other studies have revealed differ-
ent functional topographies in the ventral visual cortex (Lafer-Sousa & Conway 2013, Popivanov
etal. 2014).

Despite decades of such experimental research, in 2013, our field did not know how object
recognition worked. For example, we had not yet produced an end-to-end machine-computable
model that could receive a two-dimensional pattern of photons striking the eye (i.e., an image) and
transform this pixel-level information to accurately and rapidly solve visual object recognition.
Similarly, we had not yet produced a machine-computable model that could accurately reproduce
the ventral stream’s intermediate series of steps in that solution (DiCarlo et al. 2012).

Working in parallel over decades, a small cadre of the computer vision community (LeCun &
Bengio 1995, LeCun et al. 1989, Rumelhart et al. 1986) and the computational neuroscience com-
munity (Pinto et al. 2009, Riesenhuber & Poggio 1999) worked to stay close to the anatomy of
the ventral stream. Beginning about a decade ago, machine vision system builders in this ventral
stream—inspired lineage—fueled by more powerful computers and larger datasets (Russakovsky
et al. 2015)—began to make remarkable strides in developing machine systems (He et al. 2016,
Krizhevsky et al. 2012) that could solve the very hard problem of visual object recognition with
near-human-level accuracy. At nearly the same time, visual neuroscientists began to show that
these systems were by far the empirically leading scientific models of the primate brain mecha-
nisms underlying object recognition (Cadieu et al. 2014; Khaligh-Razavi & Kriegeskorte 2014;
Yamins et al. 2013, 2014).

This review is organized around reproducible models of the integrated set of neural mech-
anisms supporting object recognition; their evaluation, successes, and shortcomings; and how
existing and future neural and behavioral data can help guide the development of the next gen-
eration of such models. While this review is focused on the nonhuman primate system, we think
that this understanding will readily generalize to also explain the brain mechanisms of these same
capabilities in humans (see the sidebar titled Rationale for the Nonhuman Primate Animal Model).

Before reviewing this progress, we define our premises: What do we mean by object recogni-
tion (Section 1.1)? What do we mean by an understanding of object recognition (Section 1.2)?
More specifically, what is a mechanistic understanding of object recognition (Section 1.3)? Be-
cause object recognition is only a starting point, we synthesize our discussions around the goal of
understanding the mechanisms of visual intelligence more generally.
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RATIONALE FOR THE NONHUMAN PRIMATE ANIMAL MODEL

Why is this review focused on the rhesus macaque monkey’s visual system? To successfully generalize the mecha-
nisms of visual object recognition in humans, the animal model needs three things. First, it should have human-level
perceptual capabilities (Rajalingham et al. 2015, 2018) (see Figure 3). Second, it should admit high-spatial- and -
temporal-resolution neural measurements (Kar et al. 2019, Majaj et al. 2015) and targeted causal perturbations to
interrogate brain circuits (Azadi et al. 2023, Kar & DiCarlo 2021, Rajalingham et al. 2021) that are not feasible in
humans. Third, it should have evolutionary proximity (Perelman etal. 2011) and established brain-area homologies.
The rhesus macaque meets all of these criteria [with some noted differences (see Rossion & Taubert 2019). Thus,
an accurate model of the neural mechanisms of the monkey system will likely readily generalize to the homologous
human brain system. In this review, when we use the word primate, we mean human and nonhuman primates. For
more human-centric reviews, we refer the reader to Peters & Kriegeskorte (2021).

1.1. What Do We Mean by Object Recognition?

When a human observer encounters a visual scene, they quickly infer many things about the world
content of that scene. To the extent that each report agrees with the underlying physical content
of the world, we say that those inferences are accurate. The variables of the true physical content
of the world, such as the number, shape, and category of objects and the position and pose of
each object relative to the viewer, make up what is known as the latent content because the discrete
or scalar values of these variables are not explicitly available to (i.e., they are hidden from) the
perceptual system. For visual systems, such values must be inferred only from spatiotemporal
patterns of photons striking the eyes. Remarkably, however, human reports of these values are
highly accurate even with just single views of the scene—also known as single images. For instance,
if you look briefly at the example image shown in Figure 1, you are likely able to answer many
questions about the image: Did you see a bird or a cat? Did you see an owl or an osprey? Was the
bird to the left or right of the fixation cross? Was the bird behind or in front of a branch? Was
that a novel or a familiar bird? Is the bird pleasant or threatening? Typically, the study of object
recognition within a scene is focused on primates’ ability to determine the specific identity and
category of a dominant foreground object (related to the first two questions) (Figure 14), but the
broader domains of visual object perception and visual intelligence include all of these questions
and many, many more.

To answer the question of whether we are making scientific progress on understanding the
mechanisms (see Section 1.2) that underlie object recognition capabilities, it is essential to opera-
tionalize a starting set of tasks—both to assess and to characterize biological performance patterns
and the performance patterns of computational models that aim to explain how that biology works.
DiCarlo et al. (2012) proposed core object recognition as a starting point in that effort. By defini-
tion, core object recognition confines the visual intelligence challenge to the processing of images
presented within the subject’s central field of view (central 10° of visual angle) and for a limited
time (<200 ms). This operational definition was chosen for three reasons: It is known that human
shape discrimination abilities are best at the center of gaze, that the ventral visual stream pro-
cessing is dominated by the central 10° (Op De Beeck & Vogels 2000, Ungerleider et al. 1982),
that 200 ms corresponds to the duration of fixation during natural viewing behavior (DiCarlo &
Maunsell 2000, Nuthmann 2017), and that object categorization performance at the center of gaze
is remarkably accurate at this and even much shorter ones (Potter 1976, Thorpe et al. 1996).

Having rationally operationalized the sensory input domain above (10°, 200 ms), there are
still many ways one might operationally assay the perceptual contents of human or animal minds
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Visual object-related tasks
Coarse discrimination  Bird or dog?
Fine discrimination ~ Owl or osprey?
Position estimation  Left or right of + 7
Segmentation In front or behind the branch?
Memory-based tasks ~ Familiar or novel?

Valence judgment  Threatening or pleasant?

Dogs

Figure 1

Probing visual object perception through diverse behavioral tasks. (#) (Leff) An image—a two-dimensional pixel grid of RGB
luminances—comparable to a photoreceptor-transduced spatial pattern of physical (photon) energy striking a person’s retinae just after
they turn their head to look up. (Right) A series of visual object—related perceptual report tasks, highlighting the multifaceted ways to
investigate a subject’s perceptual inferences about the latent content of the world from the image alone. These tasks span from
coarse-category distinctions (such as discerning between the presence of a bird or a cat in the image) to more complex evaluations
linked to memory and emotional responses (for instance, determining the familiarity of the bird or assessing its emotional valence).

(b) Object recognition is algorithmically challenging because the same object category (i.e., the same type of latent cause) can generate a
potentially infinite set of images, and successful behavior depends on inferring the presence of that object for any such image. Examples
of images from the categories bird (fop row) and dog (bottom row) are shown to demonstrate this challenge conceptually.

around objects. For instance, one could precue the subject about the types of objects to expect, and
this could be done either explicitly (e.g., “You will see either a bird or a dog next”) or implicitly
(e.g., testing a block of many “bird versus dog” trials). Indeed, the effects of precueing have been
extensively studied in the attention literature (Zhang et al. 2011). Human observers can also be
asked to only report the object on a posttrial questionnaire or discrimination task. This article
focuses on the postcueing, minimal-memory paradigm in which subjects enter each trial with many
possible object categories to entertain (typically at least eight), and the question of which object
was present is asked immediately after a test image. We consider this paradigm to put subjects
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in a default attentional mode in which spatial attention (Maunsell 2015) is at the center of the
scene (it is implicitly precued) and feature attention (Maunsell & Treue 2006) is also in a default
mode in that the visual system can emphasize no single set of features due to the large number of
potential objects and the associated complexity of features that must be handled to succeed in the
task. We do not mean to imply that spatial and feature attention phenomena should not be part of
a complete understanding of visual processing and visual intelligence, only that the mechanisms
underlying those attentional phenomena are in reasonably natural default modes for most of the
empirical studies that we discuss below.

As discussed above, core object recognition focuses specifically on the 100-200-ms viewing
duration timescale, and thus, we review the mechanisms that are most relevant for that timescale.
Longer viewing of images and videos will likely require additional mechanistic components be-
yond core recognition, including mechanisms for directing eye movements and integrating the
information from each sampled image. Beyond object category and identity, other object-related
latent variables such as object size, position, rotation, color, and material properties not only affect
human estimates of object identity (for discussion, see Bracci & Op de Beeck 2023), but are them-
selves variables of objects that humans must also often accurately infer and are within the scope
of core object recognition. In addition, the values of other object-related latent variables, such as
object motion trajectory and velocity, could impact object-identity estimates and are also within
the scope of core recognition.

In sum, a primary output of core object recognition is the contents of the subject’s perceptual
state causally induced by each image (e.g., the values of the set of object-related latent variables
above). Key operational measures of this output include the subject’s behavioral reports of those
contents given a task paradigm (i.e., a way to trigger such reports). That is, we say that each image
causes a particular perceptual state and its associated behavioral reports. For example, the presen-
tation of an image of a cat will reliably produce the behavioral report of “cat,” and removal of that
image (e.g., presenting a full-field gray image) will reliably eliminate that behavioral report.

Our review is primarily focused on progress in understanding the primate brain mechanisms
that underlie core object recognition. Given the above definitions and paradigms, it should be clear
that core object recognition is not the entirety of what one might want to call object recognition,
and it is certainly not all of visual perception. Nevertheless, the progress outlined below suggests
that, somewhat fortuitously, a very large fraction of human ability to estimate the values of object
latent variables (see above) and the visual processing that underlies many tasks beyond object
recognition can be understood via machine-executable models that come out of this approach of
solving core object recognition first.

1.2. What Do We Mean by an Understanding of Core Object Recognition?

Much of scientific understanding is in the form of reproducible models (Kuhn 1962, Popper 1934),
ideally coupled to robust theoretical frameworks. Thus, any understanding of core object recogni-
tion should minimally include models that can potentially explain and predict empirical patterns
of behavior for any image in the core recognition input domain (central 10°, <200 ms). The field
does not agree on all model desiderata (e.g., compactness, explainability to others). Thus, the field
does not fully agree on what comprises an understanding. In this review, we focus on models with
three primary desiderata: (#) high reproducibility (i.e., models that, for any image, produce the
same predictions in the hands of other scientists), () high empirical accuracy at the behavioral
level (i.e., models whose predictions on new images tend to match the empirical observations of
behavior, e.g., to match the pattern of successes and failures over images, where success is defined
with respect to the ground-truth objects that generated the test images), and (c) brain-mapped
mechanisms (at a particular level of resolution, defined below) with high empirical accuracy at the
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neural level (i.e., the model predictions tend to match the empirical observations at the mapped
level of resolution).

We note that a model does not need to meet all three desiderata to be useful. For example,
models that meet desiderata # and & would contribute to cognitive science. Models that meet
desiderata # and ¢ would contribute to neuroscience. However, models of the integrated set of
neural mechanisms that underlie core object recognition must ultimately meet all three desiderata.
To meet desideratum #, we focus on machine-executable (also known as computable) models that
define a precise procedure (usually specified in software) that can be readily shared with other
scientists to produce the same model predictions in different laboratories. As such, computable
models, as defined in this review, have very high reproducibility.

In core visual object recognition (a behavioral capability), computable models must minimally
take images (i.e., spatial patterns of photons) as input and produce behavioral reports in response
to each image as output. Models that can make predictions (e.g., behavioral report predictions) for
any given image are referred to as image-computable or, equivalently, sensory-computable mod-
els (see the sidebar titled SMART Models). Image-computable models are scientifically crucial
because they engage the full complexity of all images (including all natural images), and they are
precisely reproducible in the hands of other scientists and are thus independently testable (Yamins
& DiCarlo 2016).

In sum, any sensory-computable model that accurately predicts the primate patterns of core
object recognition behavior would, to us, constitute a potential causal scientific understanding of
core object recognition. We note that some view this as necessary but not sufficient for under-
standing. We are not opposed to that view, but we strongly oppose the view that such models are
not even necessary (for a discussion of this issue, see Schrimpf et al. 2020).

We do not mean to imply that only one such model exists (an infinite number exists). Nor do we
mean to imply that other model desiderata are not potentially useful. Indeed, we are particularly

SMART MODELS
Sensory Computable

Predictions can be computed for any sensory input. For SMART models of core visual recognition, that sensory

input is the spatiotemporal pattern of photons on the central 10° of the retinae. The model should include at least
one behavioral report paradigm, like subjects’ reports of object-associated latent variable values such as category,

position, and pose.

Mechanistic and Anatomically Referenced

All major model components are mapped (i.e., permanently assigned) to a part of the brain. For ventral stream
SMART models, the primary brain areas of interest are the four cortical areas of the ventral stream (V1, V2, V4,
and IT), along with the retina and lateral geniculate nucleus. Current mappings are limited to the type II, and not

the type III, level of mechanisms, which treat each layer of the models as a collection of neurons from a specific

brain area without specifying any further level of detail about their connectivity with each other or to other brain

areas (see Section 1.3).

Testable

The model will make falsifiable predictions about empirically measurable neural activity and behavior correspond-

ing to any given test image. Successful predictions will support our field’s belief in a particular model or set of

models, and failed predictions will reduce that belief.
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interested in models that are not only capable of explaining the primate behavioral pattern result-
ing from any sensory input but also capable of explaining how different parts of the brain work
together (i.e., the underlying neural mechanism) to produce those behavioral patterns at various
levels of detail. Next, we elaborate on what we mean by mechanistic models of object recognition.

1.3. What Is a Mechanistic Understanding of Core Object Recognition?

Above, we first explain what we mean by core object recognition—which is operationally de-
fined as a sensory input domain (~10°, <200 ms) and a set of behavioral capabilities within that
domain (DiCarlo et al. 2012). We then emphasize that a scientifically tractable understanding
of core object recognition must centrally include reproducible, image-computable models that
accurately explain and predict the patterns of core object recognition behavior and the neu-
ral mechanisms underlying those behavioral capabilities. However, it is not immediately clear
what should comprise a neurally mechanistic understanding of that set of capabilities. Indeed,
one can study the mechanisms of any behavioral capability at many different underlying levels
(Churchland & Sejnowski 1988), and the literature demonstrates myriad observations about neu-
rons and their connections that are likely related to the mechanisms of object recognition. This
includes, for example, many reports of interesting neural functional phenomena associated with
visual processing. A partial taxonomy of such reports includes spatial receptive field (RF) phe-
nomena of visuocortical neurons (Rust et al. 2005), surround suppression phenomena (Jones et al.
2001), repetition suppression phenomena (Miller et al. 1991), various stimulus selectivity phe-
nomena in neuron responses in key visual processing areas (Gallant et al. 1996, Levitt et al. 1994,
Logothetis et al. 1995, Pasupathy & Connor 1999, Tanaka 1996, Tsao et al. 2006), and many other
such seminal discoveries, far too numerous to list here.

Given this wealth of prior work, neurally mechanistic computational models are essential to
integrating these myriad phenomena into a simulation of the system—from the sensory image,
to multiple interacting neuronal subsystems, to behavior. But what is a sufficiently mechanistic
model? Suppose that one was to deliver a computable algorithm (a type I system) that could take
in any retinal image along with a prompt of a task goal, and it was empirically demonstrated that the
behavioral output of that model in response to each input image precisely matched—that is, could
precisely and accurately predict—human perceptual report for any new image. Would the source
code of that system count as a satisfactory explanation of the mechanisms? We guess that, for most
neuroscientists—ourselves included—this would not be a satisfactory mechanistic explanation.

Now suppose that a similar algorithm was constructed to also have a set of internal modules that
each empirically behaved like a network (Ungerleider et al. 1982) (Figure 2) of specific visual brain
areas (e.g., areas V1, V2, V4, etc.) (Figure 2) that were anatomically mapped to the hierarchical
organization (Felleman & Van Essen 1991) of the primates’ visual cortex. For example, just like
in the brain, the algorithm’s V1 module was activated slightly before its V2 module, etc. Setting
aside the question of its empirical accuracy, this type II system is now at least slightly engaged in
the question of mechanistic explanation.

Going further, now suppose that a type II model of visual areas was constructed to consist of
only approximations of individual simulated neurons in each of those areas and their connections
with other model neurons in the other areas (a type III model). That is, the new overall model
would be a collection of model neurons, organized in a collection of model visual regions, that
work together to give rise to a computational simulation of how those neurons process any
image to give rise to a behavioral report. Clearly, this type III model is strongly engaged in the
question of mechanistic explanation. Unlike the type I system (see above), this system is not only
an algorithm—it is also a model of the integrated set of mechanisms. It is a mechanistic scientific

hypothesis.
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T 2/3
P [ viiv : DDt »
1 1 R - — — 4
V4 5
V2 e

Figure 2

Constituents of a mechanistic understanding of object recognition with increasing levels of detail. The image shows a gradual
progression from the systems level (the dorsal and ventral stream of the primate visual system shown here), to areas (ventral stream
areas are shown), to networks (feedforward and recurrent connectivity within the extrastriate areas V2 and V4 are shown), to neurons
(a schematic of arrangement within a cortical layer is shown) and molecules (a single synapse is shown). A thorough mechanistic
understanding should gradually incorporate all levels [as suggested by Churchland & Sejnowski (1988)] of detail in a model.
Abbreviations: E, excitatory neuron; I'T, inferior temporal cortex; NG, neurogliaform cells; PV, parvalbumin-type inhibitory neuron;
SOM, somatostatin-type inhibitory neuron; VIP, vasoactive intestinal peptide neuron. Image for neurons adapted from
http://knowingneurons.com. Synapse image image adapted with permission from https://scidraw.io/.

Continuing even further, now suppose that a type III model was constructed to also incorpo-
rate detailed cortical layer—type structures and connectivity anatomy, different morphological and
genetically defined neuronal cell types and associated synaptic transmission mechanisms, and bio-
physically verified dendritic models (Figure 2). This new type IV model would make quantitative
contact with biophysics, thus linking to already-agreed-upon fundamental notions of a mecha-
nism. In that sense, type IV models that successfully integrate all of these levels would, in effect,
achieve a guiding dream of our field—to accurately and causally bridge from molecules to minds
in visual object recognition. For example, an accurate type IV model would allow us to predict
the precise changes in object perception that would and would not result from specific molecular
interventions.

The overall point s that we are not pursuing any single set of mechanisms of object recognition.
Instead, this biological capability—like all cognitive capabilities—can be explained at increasing
levels of mechanistic detail. It is in this context that we next outline the state of our current mecha-
nistic understanding, as captured in reproducible, sensory-computable models. We expect that our
field will increasingly develop ever more precise models that make contact with ever-finer spatial
scales (see Section 4). The current leading models (reviewed in Section 2) are type III explanations
of mechanisms (see above).

2. SMART MODELS OF THE MECHANISMS OF CORE
VISUAL OBJECT RECOGNITION

As outlined above, a critical rallying goal in understanding object recognition is the building of ac-
curate models of the integrated set of underlying neural mechanisms and their support of object
recognition behavior. This is an incredibly ambitious scientific goal: The expected generaliza-
tion regime is effectively infinite—a successful hypothesis (i.e., model) must be accurate for any
pattern of photons that impinges on the central 10° of the retinae, must accurately explain any
object-related perceptual judgment that can be accomplished within 200 ms of viewing time (see
Section 1.1), and must ultimately explain all of the functionally relevant neural phenomena in that
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same spatial and temporal window—at least at the specified level of mechanistic resolution (see
Section 1.3).

Because the term model is used in many ways, we aim to be more precise ‘in this review. In SMART models:
particular, we seek models that are sensory-computable, mechanistic, anatomically referenced, g, ory-computable,
and testable (referred to as SMART models; see the sidebar titled SMART Models). With this  Mechanistic,
perspective, the goodness of our understanding of core object recognition (equivalently, the good- ~ Anatomically
ness of our current leading SMART models) should and can be primarily gauged by the accuracy ~ Referenced, and
with which these models explain and predict the myriad existing and future findings from all the 3;?13]13 ﬁ:l%iell;’lﬂt b
relevant underlying brain components in the very broad regime outlined above. In this section, . . eiti sts or Y
we summarize where the current leading SMART models of core object recognition came from  ipherited from Al
and the neural and behavioral observations that they have been shown to explain and predict. In  system builders and
Section 3, we summarize explanatory gaps that still need to be bridged with new SMART models. ~ then modified and

In Section 4, we outline strategies to develop the next generations of SMART models. mapped to the brain

2.1. A Sea Change in Neuroscience’s Approach to Understanding
the Mechanisms of Object Recognition

Many neuroscientists have been trained in bottom-up approaches where it is assumed that the
study of low-level anatomical building blocks of a brain system (synapses, neurons, connectivity
patterns, etc.) and the study of simplified functional phenomena (tuning functions, parameterized
stimuli) can ultimately be pieced together to derive a type IV mechanistic model of core object
recognition. As we describe below, that approach has now been reformed—top-down integrated
models that aim to achieve capabilities like object recognition are now providing the scaffold to
explain and understand the myriad bottom-up measurements.

Importantly, however, some bottom-up work in primates set the foundation for that sea change.
In particular, several decades of neuroanatomical cortico-cortical tracing studies (Felleman &
Van Essen 1991), neuronal lesion studies (Phillips et al. 1988), and neural recording studies identi-
fied the set of cortical processing stages collectively referred to as the ventral visual stream (Gross
etal. 1972, Hung et al. 2005, Logothetis et al. 1995, Majaj et al. 2015, Tanaka 1996) as critical for
core object recognition. The ventral stream consists of the primary visual cortical area V1, area
V2,area V4, and the I'T cortex (Figure 2). The input to this ventral stream starts at the retina, fol-
lowed by further processing at the lateral geniculate nucleus of the thalamus, which then projects
predominantly to cortical area V1, the first stage of the ventral stream.

Exploration into the nature of neural representation (i.e., the population pattern of neural fir-
ing in response to an image) in each of these cortical areas started with the seminal findings from
Hubel & Wiesel (1962, 1968) in the cat primary visual cortex and macaques (Hubel & Wiesel
1968) and has since extended up to the apex of the ventral stream (Hung et al. 2005, Logothetis
et al. 1995, Tanaka 1996, Tsao et al. 2006). Several organizing observations have been repeatedly
made in the ventral visual pathway. For instance, researchers have observed an increase in the RF
size of neurons along the hierarchy and a corresponding delay in mean neuronal response latency.
In particular, in the central 10°, RF sizes progress from ~1° (V1), to ~2° (V2), to ~4° (V4), to ~10°
(IT). Latencies progress from ~50 ms, to ~60 ms, to ~70 ms, to ~90 ms, respectively (DiCarlo
et al. 2012; Gattass et al. 1981, 1988; Op De Beeck & Vogels 2000). In addition, the stimulus se-
lectivity (i.e., how narrowly tuned to a specific type of natural stimuli or stimulus features neurons
are) also tends to vary across these pathways. Specifically, while V1 neurons have small RFs and
are nearly optimally driven by oriented (Gabor) patterns of light (Ringach et al. 2002), V2 neurons
show preferential activations for various textures (Freeman et al. 2013), V4 neurons for curvatures
(Pasupathy & Connor 1999), and I'T neurons for a range of semantically meaningful concepts like
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Artificial neural
network (ANN):

a machine-executable
system made up only
of connected sets of
weighted summation
nodes (neurons)

19.10

faces (Tsao et al. 2006) and bodies (Vogels 2022). Most of these observations were conducted with
a limited set of hand-crafted, parametric images. In large sets of natural images, I'T neurons have
much more heterogeneous stimulus selectivity (Hung et al. 2005, Majaj et al. 2015). Implicit in
many of these studies in areas V1, V2, and V4 was the observation that the selectivity properties at
each stage of visual processing were approximately spatial shift invariant—that is, different neu-
rons had the same functional selectivity as others (e.g., a preference for rightward-tilted Gabors)
but operating in parallel at a fully tiled set of locations across the visual field.

Together, these bottom-up observations, along with anatomical tracing studies, pointed to a
stacked, feedforward architecture with complete sets of shift-invariant neural spatial filters at each
cortical stage as the scaffold of ventral visual processing (reviewed in DiCarlo et al. 2012). That
scaffold architecture is today known as a deep convolutional neural network (DCNN), a particular
subtype of artificial neural network (ANN) models (Yamins & DiCarlo 2016). Historically, the
DCNN architectural family of models descended from work as far back as Fukushima (1980) and
later work by LeCun & Bengio (1995), Riesenhuber & Poggio (1999), and Rumelhart et al. (1986).
Nevertheless, despite 40 years of such bottom-up work following the seminal work of Hubel &
Wiesel (1962, 1968), the field had not produced models—DCNNSs or otherwise—that could solve
the hard problem of core object recognition.

However, beginning in 2012, the field of visual neuroscience witnessed a sea change in ap-
proach. This change began with the emergence of some ANNs that began to rival primates in
object categorization tasks. These ANNs were architecturally inspired by the ventral stream in
that they were all DCNN subtypes of ANNS, thereby incorporating evidence from the bottom-
up approach, as outlined above. Importantly, however, these new, high-performing DCNN models
were also guided by a top-down behavior capability goal—successful assignment of each image to
one of many object categories (e.g., Russakovsky et al. 2015). Progress toward that goal was fu-
eled by optimization techniques that allowed the setting of the myriad network parameters that
the bottom-up neuroscience functional phenomena could not determine (Krizhevsky et al. 2012;
Yamins et al. 2013, 2014). These (DCNN) ANNs turned out to have unprecedented high perfor-
mance on object recognition tasks and can be considered a key breakthrough point in the evolution
of SMART models. The advent of high-performing DCNN:Ss traces back not to a single event but
rather to a combination of improvements around labeled image data availability, compute avail-
ability, architectural modifications, and optimization improvements. For a more comprehensive
history of those developments, we point the reader to Yamins & DiCarlo (2016).

The key advances with respect to SMART models of primate core object recognition were
demonstrated between 2012 and 2014. First, due to their demonstrated behavioral-level successes,
some DCNNs were quickly elevated to the current best explanations of object recognition at
the mechanistic model type I level (see Section 1.3). Second, the arrival and availability of these
high-performing DCNN models enabled researchers to discover—surprisingly to many—that
some of these models were among the leading hypotheses at mechanistic type II and type III
levels (Section 1.3). Most notably, it was discovered that the internal simulated neurons in these
models were highly functionally similar to biological neurons along the ventral visual stream and
significantly better than previous models in the field (for reviews, see Schrimpf et al. 2018, Yamins
& DiCarlo 2016).

Next, we focus on the successes and current weaknesses of this top-down, achieve-behavioral-
capability-first approach (also known as the performance optimization approach) (Yamins &
DiCarlo 2016) to building a mechanistic understanding (i.e., SMART models). We see this ap-
proach as important and synergistic with the more traditional bottom-up neuroscience approaches
(as described in Sections 4 and 5).
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2.2. Empirical Tests of Current SMART Models

SMART models of object recognition have made significant strides toward emulating human ob-
ject recognition capabilities. For an up-to-date, complete list of the currently leading SMART
models and their empirical evaluation, we point the reader to the open science Brain-Score plat-
form [http://brain-score.org (Schrimpf et al. 2018)] (note that this platform refers to SMART
models as brain models).

2.2.1. Behavioral prediction tests of SMART models. Initially, as outlined above
(Section 2.1), the foremost objective of the ANN precursors of SMART models was to achieve
human-level performance in terms of mean behavioral accuracy over many categories, which has
been a primary benchmark in computer vision in assessing the efficacy of these models. Remark-
ably, some ANNSs have not only reached but, in some instances, surpassed the threshold of mean
primate accuracy (Dosovitskiy et al. 2020), at least for situations that are not substantially different
from what is typical (but see Barbu et al. 2019).

One can easily imagine a computer vision system that matches or exceeds mean primate per-
formance but that makes mistakes that are not primate-like (e.g., think of the barcode reader at the
supermarket checkout). In contrast, a fully accurate SMART model must, by definition, not just
match overall mean primate performance but also make the same mistakes that humans make.
Note that this is where the neuroscience or cognitive science definition of an accurate model
(empirical alignment with the brain and its output) differs from the computer vision definition
of accuracy (performance relative to ground truth). In this regard, it is highly nontrivial that
some of the high-performant DCNNs (in the computer vision sense) also turned out to have
unprecedented good alignment with independently measured patterns of human object recogni-
tion behavior. For example, for some ANN systems, objects that are difficult to discriminate are
also difficult for humans to discriminate, and objects that are easy to discriminate are also easy
for humans to discriminate. Studies using careful quantitative testing report that some DCNN
models are statistically indistinguishable from humans and monkeys (see human and monkey
comparisons in Figure 3) at this level of behavioral comparison (referred to as the consistency
of object-level confusions) (Rajalingham et al. 2015) (see Figure 4b). Indeed, such strong empir-
ical alignment observations are part of what elevates some—but not all—ANN systems from just
being brain-inspired technology drivers to being scientific SMART models of primate core object
recognition.

The current leading SMART models and humans make surprisingly comparable errors (on
object categories and individual images), suggesting a deeper, structural similarity in the way vi-
sual information is processed. This behavioral-level alignment extends to more nuanced aspects
of visual recognition and hierarchical processing of visual input, further underscoring the paral-
lels between artificial and human visual cognition (Jacob et al. 2021). However, even the leading
SMART models are not entirely behaviorally aligned with primates in all respects (see Section 3).

2.2.2. Neural response prediction tests of SMART models. One quantitative way to deter-
mine whether the neural mechanisms inside a candidate SMART model explain those at work
in the ventral stream is to measure the functional similarity of neural representations in both of
those systems. Such comparisons can be done in several ways (see the sidebar titled Testing the
Neural Alignment of SMART Models), and methods and statistics around such comparisons are
an active area of research (Kriegeskorte et al. 2008; Schrimpf et al. 2018, 2020; Yamins et al. 2014).
At their core, all of these empirical tests ask about the ability of the simulated neuronal population
in SMART model area X (e.g., SMART model area V4) to predict the neuronal population in that
same ventral stream area. The notion of prediction here refers to the testing of images that were
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Figure 3

Comparison of object recognition behavior between monkeys and humans. (#) Schematic of two subjects, a human and a rhesus
macaque, participating in a behavioral task. (5) Comparison of object-confusion patterns across pooled human (/eft) and monkey (right)
populations (for details, see Rajalingham et al. 2015). (¢) A finer-grain comparison can be performed at the image level (example images
shown). Each value is approximately equivalent to the behavioral accuracy of determining, among a set of possible objects, which object
generated that particular image (for details, see Rajalingham et al. 2018).

19.12  Kar « DiCarlo

A Review in Advance. Changes may

» - ~ . .
‘k still occur before final publication.



VS10_Art19_DiCarlo ARjats.cls June 14,2024 11:49

b Object-confusion
a Monkey comparisons

brain areas

Pooled monkey Inception-v3

Brain
measures

Monkey behavior
g A (1] !hl I L :g"d:
= wi
INPUTS S NIE= NI ] [llll “Behind a branch”
A A A A A
. . . . | —
COMPARE | § C Test of neural predictivity
] ] ] ] ] n =168 sites
v v v v v | ”
. R k.
Model behavior \ 0 opy 100
_ 2 “Bird"” 8
Ze owl”
= % “Behind a branch” 1r

Model

candidates Example

neural site
%EV =45

Neural responses (a.u.)

Model predictions (a.u.)

Figure 4

Evaluating the alignment of SMART models with primate behavior and neural responses. (#) Current SMART models (see the sidebar
titled SMART Models) are derived from brain-mapped, image-computable deep CNNs. The predictions of SMART models—for a
proposed experiment—are obtained simply by performing the same experiment on the model: for instance, by presenting a planned set
of images as the input to the model and recording the responses of individual model neurons from a model brain area (e.g., I'T) or by
recording its behavioral responses. To assess the empirical alignment with biology, these predictions are compared with the results of
that experiment, scored with a quantitative metric. Each alignment test is referred to as a benchmark. When multiple benchmarks are
performed on one SMART model, this is referred to as integrative benchmarking (Schrimpf et al. 2018, 2020). Here, we illustrate just
one behavioral comparison (b) and just one neural comparison (c). (¢) Comparison of the monkey behavioral object-level confusion
patterns and an inception-v3-derived SMART model (Szegedy et al. 2016). The metric of alignment here is the correlation over all of
the values in the two matrices (see Rajalingham et al. 2018). (¢) An image-level neural response predictivity test (here, for one study of
the IT cortex). The scatter shows results from one example I'T neural site and the SMART model-predicted responses of this site (to
do this, the model must be mapped at the level of single units; see the sidebar titled Testing the Neural Alignment of SMART Models
for how that is done). Each dot is the model-predicted response (x axis) versus the actual neural response (y axis; mean rate in a time
window, averaged over repetitions of that image). The elemental alignment metric here is the fraction of image-response variance that
is accurately predicted (EV), corrected for irreducible noise. The overall alignment metric is the median EV over all recorded neural
sites in the dataset (inset histogram) (Yamins et al. 2014).Abbreviations: CNN, convolutional neural network; EV, explained variance; I'T,
inferior temporal; SMART, sensory-computable, mechanistic, anatomically referenced, and testable.

never used to estimate any of the SMART model’s internal parameters and were never used to
estimate the model-to-brain mapping parameters [that is, testing which simulated neuron(s) in
the model correspond to the biological neuron(s) of interest].

Before describing some of those results, we note that, unlike SMART models, ANN or DCNN
vision systems that do not have mapping commitments to brain areas cannot be tested in this
way. This lack of commitment does not reduce the potential utility of these systems in other
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TESTING THE NEURAL ALIGNMENT OF SMART MODELS
Neural Response Measurements

Model. Measurements of SMART model neurons are made by presenting test images and recording activation
values of neurons in the model area—known as extracting features from a specific layer in artificial intelligence.

Brain. Experimental recordings of individual neural sites in a brain area are made using the same test images.
Spikes are counted in a latency-adjusted time window (typically 70-170 ms post—image onset), averaging over repeat
presentations. SMART models have also been compared at finer temporal resolution (Kar et al. 2019).

Mapping SMART Model Neurons to Biological Neural Units

Current SMART models are anatomically referenced at the brain area level (see the sidebar titled SMART Models).
To make finer-spatial-grain predictions, SMART model neurons must be mapped to biological neurons. There are
several methods to do this, each with pros and cons (Arend et al. 2018, Kar et al. 2019, Klindt et al. 2017, Yamins
et al. 2013). However, all mapping methods assume a linear relationship between model neurons and biological
neurons. Once determined, the mapping is frozen for evaluation.

Metrics to Assess the Goodness of Model Predictions

Neural predictivity measures how well predicted neural responses match actual measured responses, typically in
units of explained variance, R2, corrected for nonreproducible variance.

Representational similarity analysis, pioneered by Kriegeskorte et al. (2008) (see Nili et al. 2014), compares
distance matrices constructed from neural measurements and corresponding SMART model neural population
responses.

Centered kernel alignment was proposed by Kornblith et al. (2019) as a similarity measure invariant to rotation
and isotropic scaling, but not all linear transformations, to compare model and brain population representations.

venues. Instead, it simply reflects a lack of engagement on the question of neural mechanism (see
Section 1.3).

Beginning in 2013, it was discovered that the responses of SMART models’ internal
components—artificial neurons within each of the model areas (i.e., model layers)—often strongly
align with the responses of their biologically mapped counterparts (Cadieu et al. 2014; Yamins
etal. 2013, 2014). These and many later studies showed that current SMART models can predict
~50% of the explainable neural response variance. This was significantly better than models from
a decade ago (Riesenhuber & Poggio 1999, Serre & Riesenhuber 2004) but still less than perfect
(performing below the noise ceiling as estimated per neuron). It is important to note that how well
a model neuron should predict an I'T neuron recorded from a randomly sampled monkey depends
on many prior assumptions (e.g., whether we are building a model of that specific monkey or an
archetypal monkey) and is a matter of ongoing research.

Over the past decade, many studies in the ventral stream have either explicitly or implicitly
replicated this core neural finding. For example, at the spiking neural level, recent SMART mod-
els predicted V1 responses to natural images with unprecedented accuracy (Cadena et al. 2019,
Dapello et al. 2020), predicted specific types of shape tuning in V4 neural responses (Pospisil et al.
2018), and were reported to be the best predictor of anterior IT face-patch response (anterior
medial) (Chang etal. 2021). Other studies have used SMART models to predict functional aspects
of ventral stream neural representations as assessed by functional magnetic resonance imaging
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(fMRI) (Gugli & van Gerven 2015, Khaligh-Razavi & Kriegeskorte 2014, Ratan Murty et al.
2021), electrocorticography (Grossman et al. 2019), and magnetoencephalography (Cichy et al.
2016).

Despite the diversity of stimuli and methods, it is challenging to tell if there is a trend for some
areas of the ventral stream to be better explained than others. This is compounded by the fact that
different areas have different functional dimensionality (in the models and likely in the biology
as well), which makes such comparisons dependent on the metrics used. To our knowledge, the
best summary of the current state of SMART models of the ventral stream and its supported
behavior is tracked on the open science Brain-Score platform (http://brain-score.org). While
far from flawless, this platform is better than no tracking at all, and it continues to improve in
its functionality and number of neural and behavioral benchmarks. Inspection of the Brain-Score
benchmarks suggests that leading SMART models currently capture a large amount of neural
functional response variance but that no model is yet fully accurate, even among the limited set
of neural benchmarks that are available.

Taken together, what all of these studies imply is that the image-driven functional response
profiles of individual neurons along the ventral stream are surprisingly similar to the functional
profiles of their individual digital twin SMART model neurons. The representational tests imply
that the population distributions of the different functional types of neurons are approximately
matched. Indeed, the leading SMART models of the ventral stream are referred to as the leading
models in part because they do very well on these neural functional comparisons—far better than
earlier models.

2.2.3. Neural control tests of SMART models. “All models are wrong, but some are useful,”
an aphorism attributed to the statistician George Box, also applies to models of object recogni-
tion. Recently, the value of SMART models has been augmented by the goal-directed stimulus
synthesis of images. For instance, Bashivan et al. (2019) demonstrated (Figure 54) that, by using a
SMART model that included visual area V4, they could generate synthetic stimuli that drive spe-
cific, experimenter-chosen V4 neurons to response levels beyond what could be achieved by the
previously known preferred stimuli for the region. They also showed that this approach could be
used to target entire subpopulations of recorded neurons—demonstrating at least a partial ability
to independently set each neuron at a desired activation state. These tests have been referred to
as neural control tests because the goal is to drive or set (i.e., control) the neural activity level or
levels to a particular, experimenter-chosen state. A critical observation from that study was the
high correlation between the accuracy of the model predictions over naturalist images and the
quality of neural control that could be obtained, suggesting that the neural prediction measures
(Section 2.2.2) are reasonable proxy measures of the more applied goal of neural control. Related
experiments have been carried out in other brain areas. For instance, Ponce et al. (2019) demon-
strated that they could synthesize superstimuli for I'T neurons that drive the activity of these cells
beyond their usual response range (Figure 55). In fact, their results challenge the common termi-
nology in the field, given that the superstimuli for a classical face-selective neuron do not resemble
a typical primate face—paving the way for a new set of model-based intuitions for how to think
about neuronal encoding spaces (but for divergent results in human fMRI, see Ratan Murty et al.
2021). Similar approaches have also been implemented in the rodent neuroscientific community
(Walker et al. 2019).

2.3. Future Tests of SMART Models: Direct Neural Perturbations

Tests of SMART models should extend beyond behavioral and neural studies, using direct neural
perturbations like optogenetics, electrical, and other interventions to understand the mechanistic
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Examples of neural control in mid-level area V4 and in the inferior temporal (IT) cortex. (#) Model-guided generation of synthetic
images was shown to increase the neural firing rate beyond the range observed in a large set of naturalistic images (for details, see
Bashivan et al. 2019). (5) A schematic of the generative evolution method XDream (Xiao & Kreiman 2020), in which a deep generative
adversarial network was used to synthesize images presented to monkeys. Neuronal responses were used to rank and optimize the
image codes using a non-gradient-based optimization algorithm, here illustrated for a genetic algorithm. The bottom panels show
examples of images evolved for face neurons (top 7ow) and nonface neurons (bottom row) (for details, see Ponce et al. 2019).
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role of brain components. Despite their potential, these tools currently offer limited and arbitrary
levels of direct neural control (Jazayeri & Afraz 2017, Wolff & Olveczky 2018), often reinforc-
ing established conceptual causal models rather than distinguishing among alternative models.
Yet the similarity between brain tissue and SMART models presents a unique opportunity to
use these techniques to differentiate among and evaluate alternative SMART models. Advanced
ANN s could simulate in vivo perturbations, promising better understanding and improved vi-
sual prosthesis strategies. This approach could bridge gaps between traditional experiments and
innovative model testing.

3. KNOWN MISALIGNMENTS BETWEEN BRAINS AND CURRENT
SMART MODELS

Despite the surprising empirical successes of the current family of SMART models described in
Section 2, there is still misalignment between these models and the primate brain at both the neural
and behavioral levels. Next, we review some known misalignments of the current ANN-based
SMART models with primate neurobehavioral data. Here, we only discuss examples of neural
and behavioral functional phenomena that current SMART models do aim to predict, yet fail. In
Section 4, we discuss how next-generation SMART models could aim to predict even finer-scale
phenomena, with successes and failures yet to be determined.

3.1. Behavioral Prediction Failures

Recently optimized ANNSs solve object recognition tasks at unprecedented mean accuracies (He
et al. 2016). However, as of a few years ago, no ANN exhibited patterns of successes and errors
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Figure 6

Explanatory gaps in behavioral and neural predictions. (#) The consistency of image-level accuracies during object discrimination tasks
between humans and several tested models (see Rajalingham et al. 2018). () Changes in classification accuracy with increasing levels of
image noise across VGG-19, GoogleLeNet, ResNet-152, and human participants demonstrate greater noise robustness in human
vision (Geirhos et al. 2018a). (¢) Classification of ResNet-50 of elephant skin (only texture cues), a normal image of a cat (consistent
shape and texture), and an image with texture—shape cue conflict (shape of a cat, texture of an elephant) showing the so-called texture
bias in leading SMART models at that time (Geirhos et al. 2018a). (4) Neural response predictivity in the IT cortex for SMART models
at that time. The A denotes the explanatory gap (for the most up-to-date measures, check http://brain-score.org). (¢) Relative to the
early IT response (90-120 ms after stimulus onset), feedforward SMART models are poor at predicting the late IT population response
(150-200 ms). This gap is particularly prominent for test images for which monkeys behaviorally outperform the models [challenge
images (red line); AlexNet shown here] compared to images where models and humans have similar performance [control images (blue
line)] (for details, see Kar et al. 2019). (f) The control objective of the OHP is to selectively increase the activity in one neural site while
keeping responses of all recorded neural sites close to zero (top row). The middle row shows the naturalistic image that most closely
accomplishes this objective. The bottom row shows a SMART model-driven synthetic controller image that performs much better but
still does not fully achieve the OHP objective (Bashivan et al. 2019). Abbreviations: I'T, inferior temporal; OHP, one-hot problem;
SMART, sensory-computable, mechanistic, anatomically referenced, and testable.

across images that fully aligned (Figure 64) with human patterns measured over the same images
(Rajalingham et al. 2018). More targeted looks into these misalignments have revealed specific
shortcomings of ANNs that make them incomplete models of human behavior. We discuss the
most prominent of these targeted analyses below.
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First, Geirhos et al. (2018b) observed that some leading ANN’s at that time (e.g., VGG-19,
ResNet-152) were less robust (compared to humans) to the addition of Gaussian noise to images
during object categorization (Figure 6b). Interestingly, Geirhos et al. (2018a) also discovered that
these ANNS relied more on the texture of the objects compared to their shapes (Figure 6c¢), while
humans typically rely more on object shape in comparable tests.

Second, is the behavioral susceptibility of ANNs to so-called adversarial attacks (Goodfellow
et al. 2014). In brief, given the full observability of all ANNs, optimization methods have been
used to search through high-dimensional pixel space and successfully find small-amplitude image
perturbations that strongly change the behavioral output of the ANN (e.g., changing the output
from “dog” to “church”). The (Euclidean) pixel amplitude of these attacks is typically less than a
few percent of the distance between arbitrary natural images, and it was demonstrated that human
behavior is largely [but not completely (Elsayed et al. 2018)] insensitive to the same changes. This
suggests a potential mismatch of those early SMART models with human vision. At the time
of this writing, tests on newer SMART models, which also have higher neural alignment (Guo
et al. 2022, Schrimpf et al. 2018), have revealed that human perception can be surprisingly and
strongly modified by similarly small-amplitude image perturbations (Gaziv et al. 2023). And, when
properly compared, these current leading SMART models have far less behavioral misalignment
with human perception than the original adversarial work (Gaziv et al. 2023). However, a gap
nonetheless remains.

Third, other phenomena of visual perception are thought not to be well predicted by cur-
rent SMART models. Examples include local versus global shape processing phenomena, the
dependence of object classification on object part relationships, filling in illusory phenomena,
and uncrowding phenomena (Bowers et al. 2022). However, many of these putative behavioral
gaps have not been systematically tested. Scientific caution is warranted here, as SMART models
continue to unexpectedly predict things that were not part of their explicit design and, thus, that
one might not expect them to predict (Fan & Zeng 2023, Ngo et al. 2023). These are now active
areas of model-to-human empirical comparison studies.

3.2. Neural Prediction Failures

As outlined in Section 2, current SMART models are surprisingly accurate at predicting neural
responses in areas across the ventral stream, even at the single-neuron level. However, even the
current best SMART models only predict 50-60% of the explainable variance in the neural re-
sponses in V4 and IT cortex (Figure 6d) (for the most updated statistics, refer to Brain-Score).
This exposes an apparent explanatory gap that still remains to be bridged. A more targeted in-
vestigation of these misalignments reveals that current SMART models are not fully accurate
models of ventral visual processing, even at their currently intended mechanistic level (type IIT;
see Sections 1.3 and 4). We discuss a few of these targeted analyses below.

First, when looking specifically into the functional subtypes of neurons, like face-selective neu-
rons of the IT cortex, Chang et al. (2021) reported that CORnet-S (a leading SMART model)
only predicts ~50% of the explainable neural variance. In addition, the layers of the current
SMART models and the brain areas of the primate ventral stream are not strictly hierarchically
aligned, necessitating more careful investigation of how signals across these areas are integrated
over time and how the models could explicitly implement these computations (Sexton & Love
2022). Second, the neural dynamics of current SMART models are clearly not in line with those
of the ventral stream. For example, Kar et al. (2019), working at the spiking neural level, recently
found that, while feedforward ANNSs do quite well at predicting the I'T population pattern in the
early phase of the neural responses (90-120 ms after image onset), they are poor to moderate at
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predicting the late phase of the neural population pattern (150-200 ms after image onset). As
shown in Figure 6e, this difference increases for images [labeled as challenge images by Kar et al.
(2019)] where primates outperform baseline ANN models such as AlexNet. This observation is
consistent with the lack of recurrent connections in these ANNs that other results suggest are
critical in shaping the late phase of the I'T response (Kar & DiCarlo 2021). Third, Bashivan et al.
(2019) observed that current SMART models at that time did poorly at predicting V4 neural re-
sponses to strongly out-of-domain images, a finding also demonstrated for I'T responses (Ponce
et al. 2019). Bashivan et al. (2019) also observed that the one-hot population control paradigm
(where the objective was to design images that only activate one neural site while not activating
all of the other measured V4 sites) (shown in Figure 6f; top), could not be perfectly executed (as
shown in Figure 6f, bottom).

These observations collectively point toward the inherent limitations of current SMART mod-
els, even at their currently intended mechanistic level, and emphasize the pressing need for
iterative advancements in SMART modeling approaches to encompass the intricate nuances of
the primate ventral stream neural machinery.

4. WHERE WILL THE NEXT GENERATION OF SMART
MODELS COME FROM?

Over the past decade, significant progress has been made in developing SMART models of visual
object recognition at the center of gaze. Importantly, Al engineering is helping to fuel that progress
(see sidebar titled Role of Artificial Intelligence Engineering in Systems Neuroscience; Figure 7).
However, these models have limitations. First, the current best models still do not account for (i.e.,
predict and control) 100% of the neural and behavioral functional measures of core ventral visual
processing that they already aim to account for (see Section 3). Second, it is still unclear if simple
variants of the current models can or cannot account for visual processing and visual behaviors
beyond the central 10° and beyond what is achieved in the first ~200 ms of visual processing in
a default attentional state. Lastly, current SMART models do not yet map to—and thus cannot
yet account for—the potentially different functions of different cortical layers, anatomical recur-
rences, and diverse neuronal cell types (including cells with different morphologies and genetic

profiles).

ROLE OF ARTIFICIAL INTELLIGENCE ENGINEERING IN SYSTEMS
NEUROSCIENCE

It is a striking observation that artificial intelligence (AI) engineering to performance optimize a ventral stream—
inspired family of deep ANN models—but without further regard for the brain—returned a generation of
neuroscientific models of the brain mechanisms that were more accurate than their predecessors (Cadieu et al.
2014, Yamins et al. 2014). Does this mean that neuroscientists should just sit back and wait for Al engineering to
deliver the next generation of better neuroscientific models? In theory, it should be obvious that this trend must
have limits—one cannot model all of biology without empirically studying biology. Indeed, while this remarkable
upward trend continued for SMART models of the ventral stream from 2013 to 2016, we have already seen the
turning point (Figure 7). Today, more accurate neuroscientific SMART models are deriving from a close collabo-
ration between natural science experiments and Al engineering. However, other areas of systems neuroscience are,
we believe, still on the upward trajectory in that even loosely brain-inspired Al engineering is indeed still producing
the leading neuroscientific models (Kell et al. 2018, Schrimpf et al. 2021). We expect such trends to continue and
then evolve in a similar way: An initial period of Al engineering—driven gains, followed by a period with a tight
iterative loop between experiments and SMART model updates, is needed.
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Performance on ImageNet categorization

Relationship between object categorization performance and neural alignment of ANN models. (#) Each dot is a set of CNN model
features. The x axis shows performance on an object categorization task (not ImageNet). The y axis shows I'T neural predictivity of the
model features. Noting this trend, shown in panel #, Yamins et al. (2014) used optimization methods to develop the HMO model and
found that HMO’s penultimate layer (red dot) explained unprecedented levels (~50%) of I'T response variance at that time. Panel
adapted from Yamins et al. 2014). () Relationship between object categorization accuracy [ImageNet (Russakovsky et al. 2015)
accuracy] and I'T predictivity (see the sidebar titled Role of Artificial Intelligence Engineering in Systems Neuroscience; results taken
from Brain-Score). Beyond HMO (panel #), improvements in the categorization performance of the overall model continued to
produce a hidden feature layer that followed the trend that Yamins et al. (2014) had identified, leading to even higher I'T predictivity
(purple line). However, the trend did not empirically continue past 2017 (see the sidebar titled Role of Artificial Intelligence Engineering
in Systems Neuroscience for perspective on this).Abbreviations: Al, artificial intelligence; ANN, artificial neural network; CNN,
convolutional neural network; CV, computer vision; I'T, inferior temporal.
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We believe that these three challenges are tightly interrelated. For example, recall that model
performance gains in core visual object recognition led to more accurate models of the neural
mechanisms of the first 200 ms of visual processing (see Yamins et al. 2014, figure 1). Thus, we
anticipate that the development of next-generation SMART models that achieve performance
gains in other visual intelligence capabilities for which primates rely on longer timescales of visual
input will lead to even more accurate predictions of longer-timescale neurobehavioral dynamic
phenomena along the ventral stream.

Next, we highlight some ongoing and forward-looking activities and ideas in each of these
three interrelated research directions.

4.1. Directly Improving Upon Current SMART Models of Ventral Processing

A basic recipe to search among alternative SMART models of ventral visual processing has been
discussed by Yamins & DiCarlo (2016) and formalized in the deep learning framework by Richards
et al. (2019). In brief, the four key components to be explored are the model architecture (the
functional building blocks of the model), the behavioral objective [the capability goal(s) of the
model, e.g., object categorization], the learning rules (how the model is optimized with its set
architecture to accomplish the behavioral objective), and the ecological niche (i.e., the training
diet used to try to achieve the behavioral objective).

Ongoing work aims to explore these components. The primary goal of many of these studies to
date has not been to improve the empirical accuracy of current SMART models on adult functional
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measures (Section 2). Instead, these studies (#) aim to find minimal conditions that might give rise
to SMART models with similar empirical accuracy as ANNs discovered by computer vision via
bio-implausible optimization methods and () extend the set of adult phenomena that SMART
models accurately account for. This includes, for example, efforts to explore more plausible evo-
lutionary selection mechanisms (Geiger et al. 2020), more biologically plausible learning rules that
might unlock new hypotheses about postnatal visual development (Zhuang et al. 2021), more eco-
logically relevant experience histories (Barbu et al. 2019, Mehrer et al. 2021), and/or mechanisms
that can also explain the topographic organization of the ventral stream (Dobs et al. 2022, Doshi
& Konkle 2023, Lee et al. 2020, Margalit et al. 2023). These important normative activities each
seek to develop new variants of SMART models that can explain not only how the ventral stream
works the way that it does, but also why it works the way that it does and how it got to be that way.

In addition to this ongoing normative research, recent work has also been aimed at using adult
functional data to directly guide the building of more accurate SMART models of these types
of data. For example, Dapello et al. (2022) directly used neural recordings from the I'T cortex
to regularize the training of ANNs (alongside ImageNet categorization loss), leading to more
human-aligned ANNSs that better predicted neural responses on new monkey subjects, images,
and behavioral patterns and also became more adversarially robust. In a similar approach applied
to behavior, Fel et al. (2022) developed a neural harmonizer training method that aligns ANNSs
with human visual strategies while also enhancing categorization accuracy on new images. These
direct model optimization approaches may not be sufficient on their own in the near term due to
current data limits. Nevertheless, as experiments are beginning to produce ever-larger volumes of
functional primate and human data, we suspect that this strategy will also be an important part of
discovering next-generation SMART models of the ventral stream.

4.2. Evaluating Alternative SMART Models of Ventral Visual Processing

In addition to the approaches to build new models discussed above, it is just as important to high-
light the importance of methods to more reproducibly and efficiently test and adjudicate among
alternative models. These include, for example, benchmarking platforms to collect and maintain
all past tests (Schrimpf et al. 2018), methods to pit SMART models against each other to discover
controversial stimuli on which their predictions most disagree (Golan et al. 2020), and methods
to interpret the results of such tests (Canatar et al. 2023).

4.3. Building SMART Models of Visual Intelligence Beyond Object Recognition

Human visual intelligence is not just object recognition, and it is derived from the entire visual
system, not just the ventral stream. Limiting models to just object recognition hinders our under-
standing of visual intelligence and also will likely not lead to an understanding of the full suite of
mechanisms at work in the ventral stream and the rest of the visual system.

The ventral visual stream, often termed the what pathway, has been traditionally associated with
object and form representation, while its counterpart, the dorsal stream, often called the where
pathway, has been associated with representing spatial location, motion, and guiding actions like
grasping. Many recent studies have shown that the functional specializations of these pathways
are more complex and often overlap (de Haan & Cowey 2011). In addition, recent developments
in computer vision also facilitate incorporating other behavioral tasks, like object detection (Zhao
et al. 2019) and monocular depth prediction (Zhao et al. 2020), into models. Beyond recogniz-
ing individual objects, our brain processes entire scenes, recognizing actions and interactions of
various agents (McMahon & Isik 2023), understanding contexts (Zhang et al. 2020), and making
predictions based on the environment and the physics of the world (Bear et al. 2021). Therefore,
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SMART models should be developed to understand how these two pathways interact and integrate
visual information.

More broadly, to truly understand and model human visual intelligence, we must venture
beyond just object recognition and delve into the myriad of other tasks that our visual system per-
forms. This is likely not only to involve what are now mainstream ANN optimization methods,
but also to be accelerated by modeling methods that begin with symbolic structure, can generate
alternative internal predictions at some level of representation (Lake etal. 2015), and can explicitly
manage probabilistic inference in a manner that can scale (Gothoskar etal. 2021). Indeed, the field
is now seeing a fusion of such approaches with ANN optimization methods and, when neurally
mapped, this will produce new SMART models that will need to be experimentally adjudicated.

4.4. Building and Evaluating Alternative, Cellular-Level Implementations
of SMART Models

Many aspects of the known primate brain circuit architecture are not explicitly mapped onto the
current SMART models. While it is possible that functional approximations of such motifs are
already present in these models in some form, an explicit mapping is definitely missing, render-
ing these models less interpretable (Kar et al. 2022). These motifs include, but are not limited to,
cortico-cortical recurrence, thalamocortical loops, basal ganglia loops, cortical laminar structure
and local circuitry, cell types, biophysically grounded dendritic and neuronal models, synaptic dy-
namics and adaptation, and spiking mechanisms. It is currently unclear how much these structures
will turn out to be critical for closing the accuracy gaps in predicting the behaviors supported
by the ventral stream or predicting functional neural measurements along the ventral stream
(Section 2.1). However, one fundamental principle in neuroscience is that form, encompassing
morphology and anatomy, invariably constrains function. By this logic, enhancing SMART mod-
els to more closely mirror these recognized anatomical facts will likely bolster their empirical
functional accuracy.

The challenge of computationally integrating all of these elements remains formidable. As a
result, researchers are taking a piecemeal approach, examining the impact of each omitted or in-
accurately represented element individually. Such examples include work on recurrence (Kar et al.
2019, Kubilius et al. 2019, Nayebi et al. 2021, Tang et al. 2018, Zamir et al. 2017) and incorporat-
ing cell types (Blauch et al. 2022, Cornford et al. 2020). We note that the endeavor of integrating
new neuroscientific components into SMART models can add value in key ways beyond overall
improvements in brain alignment against existing measurements. In particular, even if no quanti-
tative empirical accuracy gains are realized, incorporating these components provides routes that
could allow for novel perturbation and control tests (see Section 2.2) that might reveal new clinical
translation opportunities (further discussed below).

5. POSSIBLE APPLICATIONS OF SMART MODELS

This review highlights the advancement toward brain-mapped ANNSs as leading SMART models
in object recognition (Section 2), acknowledging their current empirical inaccuracies (Section 3)
and limited implementations at fine-grained (e.g., subcellular) levels (type IV; Section 1). As
SMART models evolve, we discuss a philosophical issue: their critique as uninterpretable black
boxes in neuroscience and artificial intelligence (AI). While these models are fully observable,
making the criticism somewhat inappropriate, their complex nature makes intuitive understand-
ing of their behavioral decision processes difficult. In neuroscience, this criticism has resonance
because, if the goal is to use SMART models as a proxy for our understanding of the brain’s
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visual processing, then weaknesses in interpretability seem like limitations. More succinctly, if
we succeed in building a digital twin (i.e., a SMART model) but do not fully understand it in all
the ways outlined above, how can we say that we understand the brain system that it purports to
explain? We expect that theoretical approaches that examine fully observable SMART models,
rather than the brain itself, will help our field close some of these gaps (Cohen et al. 2020, Poggio
et al. 2020). However, what if this does not—or cannot—happen to our satisfaction?

In this review, we first engage this criticism by logically articulating the concept of mechanistic
understanding (Section 1), and we note that many celebrated mechanistic models in neuroscience
are subject to similar criticisms (e.g., the Hodgin-Huxley model of action potentials, which is
nonlinear and not always intuitively predictable). However, in this section, we put forward another,
even more important answer to this criticism: Beyond our field’s quest for scientific understanding
is a pragmatic goal—to improve the quality of human life. As we outline next (paraphrased from
Schrimpf et al. 2020), even difficult-to-interpret SMART models will almost surely be capable of
guiding us to new ways to do this.

5.1. Application in Basic Neuroscience Research

In the ventral visual stream, SMART models are already being used to focus experimental re-
sources on the most interesting aspects of brain function that are not yet accurately described.
For example, by drawing on the predictive accuracy of these models, neuroscientists can now use
them to control individual neurons and entire populations of neurons deep in the visual system
via model-synthesized patterns of light applied to retinae (Bashivan et al. 2019, Ponce et al. 2019).
Such model-driven stimulus synthesis methods can be used to better adjudicate among alterna-
tive SMART models (Golan et al. 2020). Similarly, variants of SMART models that predict image
memorability can be used to discover image manipulations that causally affect human memory
performance (Goetschalckx et al. 2019).

In another study, SMART models were used to discover that the macaque I'T cortical responses
are surprisingly sensitively to small, model-guided image perturbations (Guo et al. 2022) and that
human category judgments are also surprisingly sensitively to these perturbations (Gaziv et al.
2023). Given the vastness of image space, this previously unknown neurobiology and these pre-
viously unknown perceptual sensitivities would have been impossible to discover without these
models. Indeed, these discoveries trace back to theoretical and empirical analyses of the SMART
models themselves (Goodfellow et al. 2014) and efforts to build new candidate SMART models
(Madry et al. 2017).

Stepping back, one can see that the overall research trend here is this: Step 1 is for neurosci-
entists, cognitive scientists, and computer scientists to work together to transfer the structure of
a brain subsystem (which is only partially measurable) into one or more SMART models, where
reasonable choices of task and optimization methods help fill in much of the nonmeasurable model
structure. In step 2, they then use those now fully observable digital twin SMART models to make
and test predictions about that brain subsystem, leading to new scientific discoveries and exposing
new model-versus-brain mismatches. Step 3 is to use those models (not the brain itself!) to build
a deeper theoretical understanding, which then leads to new SMART models (i.e., a new run of
step 1). Repeat the cycle.

5.2. Application in Other Domains

As our field discovers SMART models that are ever more closely aligned to primate brains and
primate behavior, gains will naturally follow in several domains.
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In AT and computer vision, we will, in fact, be discovering machine systems that, for example,
successfully generalize more like humans, are less susceptible to adversarial attacks, and are
potentially more energetically efficient. For more general reviews on this topic, we refer the
reader to Hassabis et al. (2017).

In direct brain—machine interfaces, sufficiently accurate SMART models of visual processing
can be used to determine complex, nonintuitive direct brain stimulation patterns (Azadi et al.
2023, Chen et al. 2020) that could be applied in mid- and high-level visual areas to replicate visual
percepts (e.g., in blind individuals).

In mental health, for most brain disorders, the treatment goal is to precisely modulate brain
activity in a beneficial way. Going beyond pharmaceuticals (difficult to target precisely) and in-
serted probes (dangerous and still not precise), accurate SMART models might reveal entirely new
treatment possibilities. For instance, these models could direct the synthesis of patterns of light
delivered to the retina that predictably and precisely modulate entire populations of neurons deep
in the brain at single-neuron resolution to, in turn, beneficially improve cognitive states such as
anxiety or depression. To pursue this and other such interventions, a concerted effort is needed
to develop and fine-tune models that cater to individuals with unique neurological and behav-
ioral challenges. These refined models, when validated, could revolutionize clinical interventions.
Model generators that can explain human variation will be needed to unlock this utility (for ex-
ample, see Kar 2022). In addition, the more control knobs that a model can engage with, the more
potential clinical interventions it can provide, underscoring the imperative to build SMART mod-
els that connect to the cellular and molecular components (type IV SMART models) to unlock
powerful molecular and genetic interventional toolboxes.

5.3. The Future

We hope the reader will see how these same application themes can—and, we think, will—readily
generalize to SMART models of other aspects of cognition, such as audition (Kell et al. 2018),
language (Schrimpf et al. 2021), motor planning (Rajalingham et al. 2022), and beyond. The key
overall point is that all of the above applications—and myriad others not yet imagined—will get
ever better with ever more accurate SMART models, even if we do not fully understand those
models in all the ways that we aspire to.

1. The past decade has seen ventral stream-inspired deep artificial neural networks
(ANNs) emerge that have achieved unprecedented, human-like accuracies on core object
recognition tasks.

2. Specific ANNSs, once mapped to the brain [sensory-computable, mechanistic, anatom-
ically referenced, and testable (SMART) models], have internal neural representations
that surprisingly mimic activity along the primate ventral visual pathway and core object
recognition behavioral patterns.

3. Current leading SMART models can be used to synthesize goal-directed stimuli that
successfully modulate targeted neural populations in nontrivial ways.

4. Current ANN models do notyet fully capture the neurobehavioral nuances of the ventral
visual processing stream and its supported core object recognition behaviors.
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1. The next step is to create next-generation SMART models that ensure tighter inte-
gration with neural and behavioral experiments, leading to corresponding application
gains.

2. Researchers should explore and evaluate alternative SMART models that expand beyond
visual object recognition.

3. Future research should delve into cellular-level implementations of SMART models,
integrating known anatomical details such as cortico-cortical recurrence, cell types, and
synaptic dynamics.

4. As the field begins to leverage this new SMART model—based understanding for poten-
tial clinical interventions and behavioral modulation, it is crucial to ensure that ethical
considerations are at the forefront.
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