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Abstract

A central goal of systems neuroscience is to  understand how the brain represents and 
processes information to guide behavior (broadly defi ned as encompassing  perception, 
 cognition, and observable outcomes of those mental states through  action). These con-
cepts have been central to research in this fi eld for at least sixty years, and research 
efforts have taken a variety of approaches. At this Forum, our discussions focused on 
what is meant by “functional” and “inter-areal,” what new concepts have emerged over 
the last several decades, and how we need to update and refresh these concepts and ap-
proaches for the coming decade.

In this chapter, we consider some of the historical conceptual frameworks that have 
shaped consideration of neural coding and brain  function, with an eye toward what 
aspects have held up well, what aspects need to be revised, and what new concepts may 
foster future work.

Conceptual frameworks need to be revised periodically lest they become counter-
productive and actually blind us to the signifi cance of novel discoveries. Take, for 
example, hippocampal place cells: their accidental discovery led to the generation of 
new conceptual frameworks linking phenomena (e.g.,  memory,  spatial navigation, and 

Group photos (top left to bottom right) Kenneth Harris, Jennifer Groh, James 
DiCarlo, Wolf Singer, Jason MacLean, Andrew Schwartz, David McCormick, Pascal 
Fries, Terry Sejnowski, Kenneth Harris, John Reynolds, Matthias Kaschube, Jennifer 
Groh, Wolf Singer, Gilles Laurent, James DiCarlo, Gordon Pipa, Pascal Fries, Terry 
Sejnowski, Gilles Laurent, Martin Vinck

From “The Neocortex,” edited by W. Singer, T. J. Sejnowski and P. Rakic. 
Strüngmann Forum Reports, vol. 27, J. R. Lupp, series editor.  

Cambridge, MA: MIT Press. ISBN 978-0-262-04324-3



224 K. D. Harris et al. 

sleep) that previously seemed disparate, revealing unimagined mechanistic connec-
tions. Progress in scientifi c understanding requires an iterative loop from experiment to 
model/theory and back. Without such periodic reassessment, fi elds of scientifi c inquiry 
risk becoming bogged down by the propagation of outdated frameworks, often across 
multiple generations of researchers. This not only limits the impact of the truly new and 
unexpected, it hinders the pace of progress.

Outline and Basic Concepts

Two ideas have driven theories of the cortex for decades: the “column” and the 
“ canonical circuit.” Although these concepts certainly have a grain of truth to 
them, it is now clear that they are oversimplifi cations in need of improvement.

The Cortical Column

The “ cortical column” is an anatomical term that connotes a discrete set of 
cells operating together to perform a computational function. As originally un-
derstood, columns are discrete entities, but there can be connections between 
columns. In this classical view, it must be possible to defi ne boundaries be-
tween columns by some means; however, this is almost never possible. Even 
in the barrel cortex, where “columns” could be easily understood as being de-
fi ned by the anatomically distinct regions that respond only to single whiskers, 
boundaries can only really be defi ned in layer 4; in the other cortical layers, 
there are no clear cytoarchitectural borders corresponding to the barrels, nor do 
the cells show sudden transitions in their whisker preference across the corti-
cal surface. In a classical cortical column, features are represented across the 
surface of the cortex, and in vertical penetrations, the majority of the neurons 
share the same feature selectivity.

Vernon Mountcastle was one of the fi rst cortical neurophysiologists to em-
phasize the vertical organization of the cortical layers (Mountcastle 1957). His 
view of  modularity was that a given cortical structure is composed of modules 
with neighbors of similar functionality. Functionality is determined more by 
the input a module receives than in the interconnectivity of the cells compos-
ing the module. The idea here is that this neighborhood similarity is preserving 
some type of topology. The basic element of a module is that of a minicolumn, 
which is about 30 microns in diameter and contains about 100 cells. Larger 
columns (1 mm diameter) may be composed of hundreds of minicolumns.

Multiple behavioral variables are mapped to the same cortical module, 
which suggests that these modules can participate in different systems and that 
this participation is probably dynamic. Mountcastle believed that small clus-
ters of neurons corresponding to columns were fundamental components of 
cortical  function. For each of these cortical processing units, output was pro-
duced from structured input. He defi ned a microcircuit as “the small number 
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of neurons synaptically linked in a processing chain that leads from some 
particular input…to some particular output” (Mountcastle 1998). These mod-
ules were defi ned almost entirely using criteria such as cellular morphology, 
layer-specifi c input-output patterns, and afferent-efferent projection anatomy. 
He emphasized the importance of discovering the input-output or cortical 
“operation” of this circuit, considered to be the essence of cortical function, 
and offered a number of candidates as examples (e.g., differentiation, pattern 
recognition and generation, coincidence detection, and encoding-decoding of 
output and input).

To a good approximation, different regions of cortex consist of similar 
cell types that occur in similar layers, with similar patterns of physiology 
and  gene expression, and are connected using similar rules of connectivity 
and plasticity. Indeed, recent transcriptomic analysis (Tasic et al. 2018) sug-
gests that while excitatory neurons may be distinct between cortical regions, 
inhibitory cells are extremely well preserved. Further work to date suggests 
that the connectivity, physiology, and in vivo functions of these cell types 
are largely preserved between areas (Douglas and Martin 2007; Harris and 
Shepherd 2015).

It has been over fi fty years since the concept of a  cortical column was for-
mulated, and we suggest that it needs to be modifi ed to fi t current experimental 
evidence. Rather than a discrete column, the fundamental unit of cortical  com-
putation could be described as a “ laterally iterated processing unit” (LIPU). 
Here, the idea is that the synaptic connections of every cell are set up by rules 
of activity-dependent and chemically hardwired plasticity that are largely inde-
pendent of the cell’s position on the cortical surface. This does not imply that 
cortical connectivity has to be spatially isotropic. For example, in the visual 
cortex of carnivorans, connections have a “patchy” appearance that links re-
gions representing similar orientations (Das and Gilbert 1995). Nevertheless, 
these non-isotropic connections can arise from isotropic rules—a phenomenon 
familiar in physics (known as symmetry breaking) that allows, for example, 
a spatially non-isotropic crystal to form even out of spherically symmetrical 
atomic components.

In the not too distant future, it should be possible to reconstruct connectiv-
ity in a cubic millimeter of cortex from electron microscope cross sections 
(Kornfeld and Denk 2018). This will provide evidence for the patterns of con-
nections between different cell types and the degree to which they are repeated 
across the cortex. Differences in the spatial scale of repeat distances may be 
different in different areas of cortex.

As we have defi ned it, the LIPU is still an example of  modularity. What are 
the boundaries that defi ne this unit? Are they physical (anatomical), computa-
tional (e.g., a fi eld of integration encompassed by a “convolutional kernel”), or 
merely conceptual (a device that makes a complex system easier for scientists to 
understand)? While the answer is of course still unknown, insights can be gained 
from computational models of  artifi cial  networks, to which we turn to next.
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What Does the LIPU Do?

If there is a  canonical circuit embedded in the LIPU, presumably it applies a 
similar processing strategy to diverse types of inputs, performing  information 
processing functions that are useful to the rest of the brain. Of course, we still 
do not know what this function is but several candidate theories have been put 
forth. Below, we begin with four of the leading theories.

LIPU Theory 1: Unsupervised Learning

Perhaps the oldest hypothesis for  cortical function, the roots of  unsupervised 
 learning can be traced to Barlow (1972), Marr (1970), and Konorski (1967). 
The hypothesis is that cortical excitatory neurons apply unsupervised learning 
rules to extract features from the data: the input patterns are of distinct statisti-
cal structure, which means they will be likely to correspond to features in the 
natural world of behavioral signifi cance.

At the level of computational models, many unsupervised  learning rules 
have been described. Neural instantiations of standard statistical procedures 
(including principal component analysis, cluster analysis, and independent 
component analysis) have all been formalized (Hertz et al. 1991; Dayan and 
Abbott 2001). The multiple excitatory cell types in the cortex might use differ-
ent learning rules to instantiate different types of unsupervised learning, and 
perhaps this is the cause of their characteristically different tuning properties 
(Harris and Shepherd 2015). Furthermore, cortical cells could represent unsu-
pervised rules that we have yet to imagine.

A simple modifi cation of the theory allows for cortex to implement simple 
 supervised learning rules to form, for example, more detailed representations 
of stimuli that are present at times of high behavioral salience, as signaled by 
the activity of neuromodulatory systems (at least in sensory cortex). Substantial 
evidence suggests not only that  cortical plasticity is enhanced by neuromodu-
lators, but that in vivo representations of stimuli are stronger and more persis-
tent when neuromodulatory systems are active (Froemke et al. 2007).

This theory is viewed by many neuroscientists as a default. However, it 
does not account for many experimental facts; for instance, the diversity of 
inhibitory cells found in cortex and their diverse modulation by nonsensory 
factors (McGinley et al. 2015b). Indeed, while some unsupervised rules re-
quire inhibitory cells for their activity, there are none that need such extreme 
diversity. Another is the existence of recurrent and feedback excitatory connec-
tions, which are not required by such  networks.

LIPU Theory 2: Excitatory Recurrence Allows  Bayesian Inference

The second theory, which dates at least to computational models in the 1980s 
(Ackley et al. 1985), is based on the ubiquitous presence of  excitatory recur-
rent connections in cortex. These connections come at a cost: misfunction in 
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recurrent excitatory circuits is at the root of  epilepsy. Subcortical structures, 
while often having recurrent inhibitory connections, do not have such exten-
sive recurrent excitation, nor have recurrent excitatory connections been de-
scribed in any species other than amniotes.  Presumably, therefore, recurrent 
excitation plays an essential role in cortical computation, and perhaps one that 
allowed some amniotes to develop impressive cognitive capabilities.

At the heart of this theory is the idea that recurrent excitatory connections 
encode “priors” or “expectations” concerning relationships between stimuli 
that the animal is likely to experience. For example, visual scenes often contain 
extended contours. Recurrent connections between excitatory visual cortical 
neurons connect neurons whose receptive fi eld centers are elongated paral-
lel to the orientation of the receptive fi eld (Iacaruso et al. 2017). These con-
nections should therefore be able to “fi ll in the gaps” in continuous contours. 
Generalizing from this simple sensory example, one might expect recurrent 
connections to allow associations between higher-order cognitive concepts in 
multiple cortical regions.

These ideas have been formalized in a  computational neural network archi-
tecture called the “ Boltzmann machine” (Ackley et al. 1985). In a Boltzmann 
machine,  Hebbian plasticity strengthens connections between coactive neu-
rons; if an assembly of neurons is usually driven together by sensory stim-
uli, connections between them will later enable “fi lling in” of the activity of 
neurons whose activity is missing. Mathematically, it was possible to prove 
that the Boltzmann machine performs a formal process of  Bayesian  inference: 
given the available sensory evidence, it estimates possible causes that are com-
patible with them, sampling an activity pattern from a posterior probability 
distribution of possible states of the outside world, that are compatible with the 
available (incomplete) sensory data.

The Boltzmann machine is an attractive model for a function of the LIPU. 
Furthermore, some behaviors of this network bear an uncanny resemblance 
to brain activity (e.g., it produces  spontaneous activity that mimics the struc-
ture of expected sensory inputs). Nevertheless, many features of actual cortical 
circuits are not required by Boltzmann machines. At least in its initial formu-
lation, there are no inhibitory neurons in a Boltzmann machine, let alone a 
myriad of cell types. In addition, there is no structured connectivity of different 
cell types and cortical layers, and there are no spikes. Furthermore, while the 
original Boltzmann machine was able, in principle, to perform any inference 
given suffi cient time, it learned too slowly in practice to be of use in real-world 
information processing. More complex versions of the Boltzmann machine 
architecture, which involve hierarchically repeated populations analogous 
to a hierarchy of cortical regions, are much more computationally powerful 
however (Hinton and Salakhutdinov 2006). Thus, a version of the Boltzmann 
machine that incorporates more complex features could be even more compu-
tationally powerful.
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LIPU Theory 3: The Liquid State Machine

The third theory, unlike  the fi rst two, does not need synaptic plasticity to adapt 
 network connectivity. It is based on the framework of “ reservoir” computing 
(Maass et al. 2002) that uses a randomly structured recurrent neural network 
to nonlinearly transform a time-varying input signal into a spatial high-dimen-
sional representation. At each time step, the network combines the incoming 
stimuli with a volley of recurrent signals containing a memory trace of recent 
inputs. For a network with N neurons, the resulting activation vector at a dis-
crete time t can be regarded as a point in an N-dimensional space. Over time, 
these points form a pathway through the state space, also referred to as a neural 
trajectory. This computation serves a feature expansion (i.e., a projection based 
on many nonlinear basis functions) as well as an explicit implementation of 
 fading  memory of past states. While this feature expansion is not specifi c to a 
task, task-specifi c computation is implemented based on learned and weighted 
task-specifi c linear or nonlinear mappings of neuronal activity (linear combi-
nations are suffi cient).

Even though computational properties of reservoirs can, in principal, have 
universal computational properties—that is, they can implement any Turing 
computable function (Buonomano and Maass 2009)—the performance of a res-
ervoir depends on the connectivity, properties of the dynamical elements (i.e., 
neurons), and the state of the dynamical system—that is, whether the system 
is behaving regularly, critically, or chaotically (Legenstein and Maass 2007). 
Moreover, the performance is often much smaller compared to recurrent systems 
that are optimized (e.g., LSTMs and  backpropagation through time) (Hochreiter 
and Schmidhuber 1997). This gave rise to modifi ed versions of the reservoir 
computing theory that use neuronal plasticity to self-organize connectivity and 
the dynamical state of the system (Lazar et al. 2009), implement unsupervised 
learning to implement noise-robust effi cient computations (Toutounji and Pipa 
2014), and reward-modulated optimization of reservoirs (Bellec et al. 2019).

There are several features that make this theory of reservoir computing 
special. The initial reservoir computing idea is useful because it shows that 
even fully random  recurrent  networks can compute. This is important from a 
developmental point of view, since an initially random network can be used to 
bootstrap the problem and optimize computations over time. This is especially 
relevant, since the feature expansion into a higher-dimensional representation, 
carried by a large number of cortical cells, enables random connections to re-
code information into the “sparse” format helpful to render synaptic plasticity 
more effi cient (Barth and Poulet 2012). Furthermore, because recurrent net-
works integrate and mix together activity across a range of times, they are able 
to transform patterns only distinguishable as temporal sequences into spatial 
patterns, such that a given neuron only fi res in response to a specifi c  temporal 
sequence. This framework has been given a memorable name, describing re-
current random networks as a “liquid state machine.”
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What the liquid state machine does not do, however, is produce behav-
ior: it just reformats a code into a form that can then be used by downstream 
structures to learn appropriate behavioral responses. The hard work of learn-
ing appropriate responses to stimuli is thus left to downstream structures; the 
corticostriatal synapse, whose plasticity is well characterized and controlled by 
dopamine, may be one possible locus for this.

The  liquid state machine does not predict the diversity and specifi c con-
nectivity of different cell types and layers but it is not inconsistent with them. 
Indeed, computational experiments show that  random recurrent circuits with 
 structured connectivity perform better than networks with completely random 
connectivity (Lazar et al. 2009; see also Singer, this volume). It is therefore 
conceivable that the complex structure of connectivity found in the cortex 
evolved to help this function of pattern separation.

LIPU Theory 4: Subtractive Predictive Coding

This hypothesis is in some ways an opposite of the second. A  Boltzmann 
machine  amplifi es responses to expected stimuli: when an input arrives that 
matches the types of inputs seen before, the response is stronger, with miss-
ing neurons’ activity fi lled in, and more vigorous than it would be to a com-
pletely novel type of input. The concept of subtractive predictive coding is 
the opposite: expected inputs are discarded, while responses to unexpected 
stimuli are amplifi ed and passed on to downstream structures (Keller and 
Mrsic-Flogel 2018).

The best example of this processing scheme comes not from cortex, but 
from the lateral line lobe of weakly electric fi sh (Bell et al. 1997). These fi sh 
sense the surrounding environment by producing electric fi elds and sensing 
the disturbances in these fi elds caused by nearby objects or other organisms. 
However, most of the electric fi eld impinging on their sensors does not refl ect 
external objects but simply comes directly from their fi eld generation organs, 
which the fi sh must subtract out to fi nd the behaviorally relevant external sig-
nals. By generating artifi cial signals as fi ltered versions of the fi eld which the 
fi sh generates, Bell et al. (1997) were able to show that the lateral line lobe 
performs this subtraction and does so in an adaptive way that also subtracts the 
signal presented by the experimenters.

The subtractive  predictive  coding hypothesis posits that the cortex performs 
a similar function, but it says more: Not only does the cortex subtract simple 
consequences of one’s own actions (such as subtracting the sound of your own 
voice to hear other people talking over you). It is able to make more complex 
predictions, for example, computing an expected pattern of visual input based 
on high-level cognitive expectations, and subtracting it from the actual input 
pattern to detect subtle features that do not match expectation.

Some very widely observed phenomena can be seen as examples of sub-
tractive predictive coding. For example, presentation of a steady, sustained 
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tone will not cause sustained activity in auditory cortex; it will cause strong 
activity at its onset and again at its offset (“accommodation”). Given a model 
where silences and sounds are expected to be sustained, this can be interpreted 
as producing activity when the times in which a violation of this expectation 
occurred. Nevertheless, by this standard,  accommodation is not a specifi c func-
tion of cortex: it happens in the sensory receptors themselves and again at 
many levels of the processing hierarchy. It may be that the cortex specializes in 
subtracting predictions of advanced statistical models of the outside world, but 
the experimental evidence for this is mixed. For example, Keller et al. (2012) 
reported that ~10% of neurons in  mouse  visual cortex respond to mismatches 
between self-motion and visual motion signals, whereas Saleem et al. (2013) 
reported that visual cortical neurons responded instead to a match between 
these two signals, which would be more consistent with hypothesis 2 than 
hypothesis 4.

Spontaneous Activity

Another feature  of cortical physiology which we refer to is spontaneous corti-
cal activity. Clearly, it should come as no surprise to fi nd spontaneous activ-
ity in the nervous system. If there was no spontaneous activity in the circuits 
controlling respiration, we would have a problem. However, the presence of 
spontaneous activity in the sensory systems is more surprising. Spontaneous 
activity in sensory systems, and the related phenomenon of variable responses 
to sensory stimuli, seem fairly specifi c to cortex: much lower levels of variabil-
ity are seen in subcortical mammalian structures. As yet, there is no consensus 
on the function of structured spontaneous cortical activity, but it is possible to 
list some hypotheses, again non-exclusive.

Spontaneous Activity Theory 1: Nothing, or Worse

The fi rst possibility, which cannot be excluded based on current data, is that 
spontaneous cortical activity serves no function at all. The cortex is spontane-
ously active under anesthesia, and as far as we know performs no information 
processing in this state. Although spontaneous cortical activity costs some en-
ergy, it may be that this is so minor, in evolutionary terms, that an animal suf-
fers little disadvantage, even if there is no need for it to occur at all.

An even more extreme view holds that spontaneous activity is worse than 
useless: it is a form of noise that actually impairs processing of sensory inputs 
by interfering with neuronal representations. In this view, neurons are noisy 
devices, and worse, this noise becomes correlated through the cortex’s highly 
recurrent connectivity. One result that could be taken as evidence for this per-
spective is that correlated fl uctuations in primate visual cortex get smaller 
when the subject is attending to a sensory stimulus (Harris and Thiele 2011). 
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An alternative interpretation of this result is discussed below. A related concept 
from motor neurophysiology is that neurons in the  motor cortex can merge 
together such that their combined activity is a “null space” that is occupied 
specifi cally when muscle activity is absent (Kaufman et al. 2014).

Spontaneous Activity Theory 2: Imagery, Memory Recall, and Consolidation

Spontaneous activity shares many features with sensory-evoked activity. For 
example, Kenet et al. (2003) have reported similarities between sensory-
evoked and spontaneous activity patterns in anesthetized cats and, recently, 
consistent observations were made in awake  ferrets, with spontaneous activ-
ity being more exuberant in the awake than in the (lightly) anesthetized state 
(Smith et al. 2018). Thus, one might hypothesize that spontaneous activity in 
sensory systems correlates with processes such as  imagery and  memory recall.

In this view, the brain spontaneously produces patterns of neural activity 
that mimic actual sensory responses and have similar consequences on down-
stream structures. These consequences might involve production of  actions: 
for instance, when remembering the nature and location of an object currently 
hidden from view, the brain might reproduce activity patterns similar to those 
the object would itself produce, thus allowing motor actions to be performed 
similar to those the object would itself produce.

Even if a spontaneous activity event does not directly produce action, it can 
have other consequences, such as changes in synaptic strengths. For example, 
recapitulation of activity patterns that occurred in previous behavior could 
cause further consolidation of the synaptic changes that encoded this memory; 
consistent with this view, interruption of spontaneous events in  hippocampus 
after behavioral experience disrupts formation of long-term memories of that 
experience (Girardeau et al. 2009; Jadhav et al. 2012). More complex possibil-
ities exist: spontaneous activation of neuronal assemblies containing overlap-
ping cell populations could cause changes in synaptic strengths linking these 
neurons, thereby forming associations between previously unrelated concepts. 
This process could be a basis for the process that humans subjectively describe 
as “thinking.”

Spontaneous Activity Theory 3: Nonsensory Context

While spontaneous activity shares some structural properties with sensory re-
sponses, they are far from identical (Scholvinck et al. 2015). Perhaps, then, 
a major function of spontaneous cortical activity in sensory systems has no 
direct connection to sensory processing, but instead encodes nonsensory vari-
ables, which are integrated with, and can modulate the detection of, sensory 
stimuli (McGinley et al. 2015a).

An important clue to this comes from the  mouse  visual cortex. Activity 
in visual cortex changes when mice run, even in complete darkness (Niell 
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and Stryker 2010). This activity presumably has nothing to do with expected 
sensory stimuli. Furthermore, neurons in sensory cortex respond to rewards 
(Shuler and Bear 2006), and imaging of axons arriving in sensory cortex from 
elsewhere shows they convey very complex nonsensory information. It may be 
that spontaneous cortical activity is in fact a high-dimensional representation 
of an animal’s current cognitive and behavioral state, which the cortex inte-
grates with sensory information (Stringer et al. 2018). The optimal behavior to 
produce in any circumstance depends on a combination of sensory input and 
internal context; by integrating these two classes of information, the cortex 
may provide information allowing an animal to perform behaviors that inte-
grate sensory and nonsensory data.

Cortical traveling waves, which have been observed in both sleep states and 
awake state, are another source of spontaneous activity (Muller et al. 2018). 
They modulate the membrane potentials of neurons in a spatially organized 
way and vary in frequency from theta (4–8 Hz; Lubenov and Siapas 2009) to 
 gamma (30–80 Hz; Gabriel and Eckhorn 2003).

Spontaneous Activity Theory 4: Housekeeping / Homeostasis

Our fi nal theory suggests that spontaneous activity is not a refl ection of  infor-
mation processing per se, but rather that it functions to maintain the biophysi-
cal and biochemical state of the network. Spontaneous electrical activity is 
prominent in the development of the nervous system from the earliest stages 
(Spitzer 2006). The function of this early spontaneous activity presumably has 
nothing to do with processing of sensory information,  memory recall, or motor 
variables. Instead, it seems to function to specify neural circuits, for example, 
to determine the differentiation, migration, and  wiring of developing neurons. 
Cortical spontaneous activity shows very sudden changes with development: 
adult patterns show a substantially different structure to those present earlier 
in development (Luhmann and Khazipov 2018). Nevertheless, it remains pos-
sible that cortical spontaneous activity in adults plays at least a partial role, 
similar to its role in early  development, enabling and guiding low-level main-
tenance of cellular and circuit properties. Several studies have reported that 
axonal conduction delays in the  cerebellum are tuned to allow complex spikes 
from the inferior olive to arrive in a precisely timed manner, despite differing 
physical lengths of these axons (Sugihara et al. 1993; Baker and Edgley 2006). 
If this is the case, some homeostatic mechanism must enforce these constant 
delays; spontaneous activity, perhaps during sleep, could be a key part of the 
process. Spontaneous activity during sleep has also been proposed to enable 
“downscaling” of fi ring rates and synaptic strengths built up during waking 
(Tononi and Cirelli 2014) or other metabolic functions (Vyazovskiy and Harris 
2013). Enabling these low-level metabolic and circuit functions might be a 
key function of spontaneous activity in both waking and sleep, parallel to the 
information-processing roles described above.
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Considerations from Evolution

The brain of any species cannot be understood in isolation but is best consid-
ered in an evolutionary context. Two critical concepts related to evolution, in 
general, and the brain, in particular, are inheritance (i.e., features that have 
been continuously present in a given phylogenetic lineage) and  convergence 
(i.e., features that arose independently multiple times but which accomplish 
similar functions).

For an example of inheritance, consider the molecular building blocks of 
nervous systems (e.g., ion channels), which can be found in a highly similar 
form in bacteria. The  synaptic transmission machinery operates with the same 
molecular components and principles across all animals, as far as we know. 
In fact, many of the molecular elements and their functional interactions were 
worked out in yeast. Sponges have some cells, called fl ask cells, that contain 
many of the molecular components of the postsynaptic compartment (iono-
tropic receptors, e.g., are missing but metabotropic ones are present). Flask 
cells, however, are not neurons, and sponges have no nervous system or syn-
apses (Sakarya et al. 2007). So, either synapses evolved by borrowing and 
adapting already existing components, or present-day sponges lost a nervous 
system that existed in one of their ancestors. Sponges diverged from us and 
other animals some 600 million years ago.

Short-term  synaptic plasticity mechanisms, such as facilitation and depres-
sion, are found in simplest nervous systems. Spike timing-dependent plasticity 
exists in insect nervous systems but whether these use glutamate and  NMDA 
receptors is not currently known.  Synchronization has been discovered in mol-
lusks, insects, etc. Spatiotemporal  representations are found in invertebrate 
sensory systems (e.g., in locust olfaction; Wehr and Laurent 1996; Mazor and 
Laurent 2005), or leech motor and premotor systems (Briggman et al. 2005).

Examples of convergence include looming sensitivity in single neurons in 
insects and birds. It consists algorithmically as a division of angular velocity 
by an exponential of angular size (Gabbiani et al. 2002). This algorithmic de-
scription also applies to cells in thalamic nucleus rotundus in diving birds (Sun 
and Frost 1998). It is very unlikely that the same computation (or need) existed 
in their common ancestor, which was some sort of worm. Another example is 
Jayaraman’s result (Seelig and Jayaraman 2015) on head direction-like cells 
in the central complex of insects, which is similar to models of head direction 
cells in mammalian hippocampus. The  olfactory system is also interesting: de-
spite the fact that the molecular nature of the olfactory receptor genes is differ-
ent in invertebrates and mammals, the organization (convergence to glomeruli, 
divergence and random-like distributed projections to second structures—piri-
form cortex or mushroom bodies) is similar, probably through convergence.

Evaluating  homology across species from very different lineages is critical 
for cross species comparison but is a challenging task. For example, a dorsal 
telencephalon or pallium is part of the vertebrate brain bauplan. Thus it can 
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be found in fi sh, amphibians, reptiles, birds and mammals. To trace back the 
evolution of the mammalian cortex, one has to look fi rst at the outgroup of 
mammals; that is, reptiles.

Unlike fi sh and amphibians, a large portion of reptilian pallium has a three-
layered organization, indicating that a layered cerebral cortex emerged about 
320 million years ago in the ancestor of mammals and reptiles (the amniote 
ancestor). In addition, reptiles and birds harbor a nonlaminated pallial region, 
called dorsal ventricular ridge (DVR), where neocortical-like circuits have 
been identifi ed.

The structural and functional differences of reptilian and mammalian pallial 
regions have fueled controversies on the evolutionary origin of the mamma-
lian neocortex. How can we compare reptilian and mammalian pallial regions, 
cell types, and circuits? Do similarities result from  homology or  convergent 
 evolution? And how can this discussion inform us on the evolution of  cortical 
function?

Homology hypotheses can be tested by comparing early development,  gene 
expression, and connectivity. The existence of thalamo-recipient neurons in 
the anterior DVR led to the “ equivalent  circuits” hypothesis, stating the homol-
ogy of anterior DVR and neocortical L4 neurons. The analysis of a small set of 
molecular markers supported this idea. However, anterior DVR and neocortex 
develop from two distinct regions of the embryonic pallium, and the conser-
vation of developmental fi elds would predict the homology of anterior DVR 
with mammalian claustrum and parts of the pallial amygdala, derived from the 
ventrolateral pallium.

To test these hypotheses further in an unbiased manner, Molnár and col-
leagues compared gene networks in micro-dissected chick and mouse pallial 
regions (Belgard et al. 2013). Their results show that only fi ve genes are shared 
between a L4 gene module and an anterior DVR module. Micro-dissected 
brain regions, however, may contain cells of different types in different propor-
tions, and this might confound the analysis and hide similarities. To overcome 
this limitation, Tosches et al. (2018) applied single-cell  RNA sequencing to the 
turtle and lizard pallium.

The single-cell approach allows the analysis of small and sparse cell 
populations such as cortical interneurons. The comparison of turtle and mouse 
data shows that the same classes of  GABAergic interneurons exist in the two 
species: interneurons derived from medial (MGE) and caudal ganglionic 
eminences (CGE), including somatostatin, parvalbumin-like and vasoactive 
intestinal polypeptide-like types. This suggests that developmental and/or 
functional constraints led to the conservation of these interneuron types for 
over 320 million years.

High-level clusters of glutamatergic neurons map to distinct regions of 
the reptilian pallium: the hippocampus, dorsal cortex,  olfactory cortex, the 
so-called “pallial thickening,” and the DVR. These regions express different 
combinations of transcription factors, refl ecting their distinct developmental 
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and evolutionary histories. The comparison of regional transcription factor 
codes in reptiles and mammals supports the hypothesis that the anterior DVR 
is homologous to the mammalian lateral amygdala, as also indicated by the 
fact that these regions develop from homologous developmental fi elds and es-
tablish similar connections with the rest of the brain. Nevertheless, many ef-
fector genes (e.g., ion channels, cell adhesion molecules) are shared between 
the reptilian anterior DVR and the mammalian neocortex, indicating that the 
expression of the same gene sets in these two pallial regions is regulated by 
different transcription factors. In conclusion, different pallial regions expanded 
independently in the reptilian and mammalian lineages—ventral pallium (an-
terior DVR) versus dorsal pallium (neocortex)—resulting  in the  convergent 
 evolution of  gene  expression and  circuits.

Representations and Neural Codes

What Is a Code, Anyway?

Encoding and Decoding Models: Defi nitions and Scientifi c Goals

The terms code, representation, encode,  and decode  have become highly over-
loaded in neuroscience: different people use the same phrase to mean very dif-
ferent things, so that investigators  often talk past each other rather than coming 
together to synthesize and integrate ideas. Grounding of these terms requires 
discussion of the goals and the assumptions in the models used to achieve 
those goals. A subset of our group had a lively discussion on these points, and 
here we attempt to explain those sometimes divergent viewpoints.

It is widely assumed that neural spikes are, for most problems of interest, 
the carriers of information to support  moment-to-moment behavior. (Here “ be-
havior” is broadly construed to include sensation,  cognition, and  action, and 
could be studied in an ethological or a laboratory context.) Under that assump-
tion, three main types of data are typically measured and/or experimentally 
controlled:

1. energy patterns that impinge on sensory epithelia,
2. spike patterns in populations of neurons in one or more locations in the 

brain, and
3. the positions of one or more parts of the body (e.g., arms, eyes, vocal 

apparatus).

The goal of much of systems neuroscience is to use such data to “understand” 
how the internal parts of the system operate together to execute complex sen-
sorimotor loops (i.e., “cognition,” “complex behavior,” “intelligence,” etc.). A 
more modest goal may be to describe the information content contained in a 
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population of neurons, without assumptions of the explicit role these neurons 
may play in the behavior generation. This more relaxed approach may mitigate 
many of the arguments between differing viewpoints that arise from invalid 
assumptions. Nonetheless, experiments defi ne concepts derived from such 
measurements (e.g., “motivation,” “reward expectation”), and it is important 
to keep in mind that such defi nitions are not direct measurements; they are only 
inferences, as they assume one or more underlying models of what the brain is 
doing. Indeed, all such assumed internal latent variables are inferred from the 
same three basic measurements above: stimuli, neural activity, and behavioral 
measurements. And, if judged at all, each model is judged on the accuracy of 
predictions it makes for other observed variables (typically neural spikes and/
or behavior).

The form of the understanding we seek is not usually explicitly stated. We 
argue, however, that it should ideally be in the form of inferred, neural mecha-
nistic causal models that describe the linkages between those three types of 
measurements. A  neural mechanistic model is a model that minimally contains 
approximations of neurons and their connections. A  causal neural mechanistic 
model is one in which external perturbations can be injected or model parts 
removed, so that the resulting effects on the other parts of the model will be 
accurately predicted.

As a point of departure, we may begin to understand some aspects of the 
transformations taking place as raw sensory signals propagate through the 
nervous system. These transformations are usually considered mechanisti-
cally; that is, how an output of some entity (e.g., a neuron deep in the visual 
system) fi res relative to an input (e.g., a pattern of light energy on the retina). 
As an example of a neural mechanistic causal model, consider a transfer func-
tion that is implemented as a set of modeled neural elements and their connec-
tions, which aim to describe and predict this transformation accurately. This 
model can (a) explain how the stimulus is responsible for the output, (b) make 
predictions of what other internal neural responses should be found along the 
way, and (c) predict how direct perturbations of those internal elements will 
lead to perturbations in the output. While such predictions may turn out to be 
incorrect, the model can drive a principled selection of future experiments, 
which would aim to reject this model in favor of one or more alternatives. We 
refer to this model as an “ encoding model” (see Figure 13.1). An encoding 
model has the advantage of providing a concise description of the relation-
ship between neural activity and the variables being encoded, but it may turn 
out that cause-and-effect relationships might be very complex in biological 
systems. Still, until someone proposes another way to make scientifi c prog-
ress, important work continues utilizing this framework in the hope that such 
complexity can be overcome.

This conceptual discussion and the three types of measurements listed 
above (stimuli, neuronal spikes, and behavior) lead one to see that there are 
two primary types of neural mechanistic causal models:

From “The Neocortex,” edited by W. Singer, T. J. Sejnowski and P. Rakic. 
Strüngmann Forum Reports, vol. 27, J. R. Lupp, series editor.  

Cambridge, MA: MIT Press. ISBN 978-0-262-04324-3



 Properties of Circuits, Cellular Populations, and Areas 237

1. Causal neural mechanistic  models that link between the sensory epi-
thelia and neural spiking activity at one or more places in the nervous 
system (which we refer to “encoding models”).

2. Causal neural mechanistic models that link between neural spiking ac-
tivity at one or more places in the nervous system and the positions of 
the body parts (here termed “ decoding models”).

While much progress has been made on encoding models, disagreement sur-
rounds decoding models: what they are, their utility, and how they should be 
interpreted. Here we emphasize that the goal of the decoding approach is to 
gather knowledge of the natural causal brain processes, not simply to control 
an externally attached device. We also emphasize that science must propose 
hypotheses that can be implemented (through models) so that they can be 
tested; that is, a downstream homunculus is not a scientifi c decoding model.

Encoding models
Decoding models

Sensory
domain

Behavioral
domain
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Figure 13.1 Nomenclature for different types of modeling paradigms of mechanisms 
underlying moment-to-moment sensory-cognitive-motor behavior. If we limit ourselves 
to spiking activity and  moment-to-moment behavior, four modeling paradigms may en-
compass potentially all of the model-building activities in the fi eld. S represents a defi ned 
sensory domain (e.g., the set of all possible visual movies of a specifi ed size and resolu-
tion); s(t) is a sample from such a set (e.g., a frame of one movie). Each n(t) is a poten-
tially time-varying population vector of neural activity in a brain region (e.g., the entire 
set of pyramidal neurons in layer 2/3 of primate visual area V1 that project to primate 
visual area V2), whereas b(t) is a potentially time-varying vector that describes, e.g., the 
current positions of all body parts, which itself lives in a set of possible confi gurations of 
body parts (B). Of course, reduced description b(t) is also possible and potentially useful 
(e.g., the subject’s choice on each behavioral trial). Arrows show the neural populations 
that are assumed to have direct connections: behavior can infl uence the environment and 
thus the next impinging sensory sample (outer loop). The two most dominant forms of 
model building are (a) encoding models, which are causal neural mechanistic models 
that apply to S to generate predictions of the responses of neuron populations (n) and (b) 
decoding models, which are causal neural mechanistic models that apply to one or more 
specifi ed n’s to generate predictions in a specifi ed behavioral domain (B). Although the 
examples depicted above are for visual-cognitive-motor domains, similar examples can 
be readily defi ned for other sensory-cognitive-motor domains.
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Broadly speaking, “neural decoding” is any implementable analysis that 
demonstrates the ability to predict some outcome by extracting information 
from neural recordings. The implementation is usually in the form of some 
kind of extraction algorithm (e.g., linear fi lter, population vector algorithm, 
 Kalman fi lter, or  deep learning neural network) and the success of the decod-
ing analysis is measured by its accuracy of predicting the targeted outcome 
(e.g., arm trajectory, behavioral choice). An above chance decoding perfor-
mance shows that information about the predicted variable(s) is present in 
the recorded neural activity. This has scientifi c value because information is 
exposed that may not be obviously present in individual neurons and because 
information identifi cation constrains the hypothesis space of causal neural 
mechanistic models that may exist between the recorded neurons and the pre-
dicted behavior (i.e., “decoding models”) (Majaj et al. 2015).

A common point of confusion in our fi eld is how the modeler views the de-
coding analysis: whether the extraction algorithm itself is physically realized, 
in this case, within the nervous system (perhaps within a particular anatomical 
location or set of locations), or whether it is merely a tool used to identify the 
information content at a node defi ned by the neurons whose activity patterns 
were recorded as input to the extraction algorithm. Again, as defi ned above, 
 decoding means extracting information from neural fi ring rates. This can be 
performed within the nervous system or by an outside observer. In either case, 
the code itself exists, independent of whether or not it is decoded.

Based on the principle of decoding, we hope to better understand the infor-
mation contained in patterns of neural activity. Decoding analyses expose in-
formation that is transformed by the brain as it propagates through the system. 
This allows scientists to propose and construct models and to make predic-
tions about the behavior (which the decoding test defi ned above has already at 
least partly achieved) as well as about neural activity that intervenes between 
the originally recorded neurons and the behavior. Similarly, scientists working 
on encoding models should propose alternative causal linkages from sensory 
epithelia to patterns of neural activity and conduct experiments to distinguish 
between those alternative encoding models. Of course, all models are wrong 
at some level, so that scientifi c work will continue indefi nitely, at least until 
causal neural mechanistic models of suffi cient accuracy and predictive power 
are obtained to support the application goals of the society that funds the scien-
tifi c research (e.g., new ways to intervene causally in the system to ameliorate 
brain disorders). In what follows, we formalize these defi nitions a bit further in 
the hopes of grounding these key ideas.

We defi ne a potentially time-varying, multidimensional stimulus in the ex-
ternal world as s(t), where any specifi c s(t) is an element from a domain S (e.g., 
a set of natural images, movies, sound sequences). We defi ne a potentially 
multivariate, potentially time-varying body state in (lagged) response to an ele-
ment drawn from the domain S as a behavior b(t) that will reside in the range B 
(e.g., the possible positions of the body parts that are chosen to be monitored). 
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In addition, we defi ne the time-varying activity vector of a given subset of neu-
rons (e.g., all layer 2/3 pyramidal cells in visual area V1 that project to layer 
4 of V2) as n(t). For instance, we can imagine the following example popula-
tion vectors: n[V1](t), n[IT](t), n[basal ganglia](t), etc. Given this framework, 
we propose the following possible model paradigms, which must be built and 
tested (Figure 13.1):

• encoding models, which map from s(t) to some n(t),
•  decoding models, which map from some n(t) to b(t),
•  neural population transform models, which map between n1(t) and 

n2(t), potentially recurrent, and
• modulated neural population transform models, which map between 

n1(t) and n2(t), subject to another neural population(s) ng(t).

We do not aim to be overly prescriptive, but to engender shared scientifi c ter-
minology and associated goals.

Progress has resulted from, and some of us believe that it will continue 
to result from, making measurements and using those to estimate the param-
eters of different hypothesized model families in each one of these modeling 
paradigms. We note that this framework is highly general and inclusive. For 
example, it includes the notions of external time and the notion of recurrent 
processing (note the arrows in Figure 13.1). Our goal here is not to strongly 
limit the alternative model families that might be considered, but to defi ne the 
expected inputs and the expected predictors of any actual model. Once a model 
paradigm is chosen (from the above list), and the parameters of a model are 
determined (i.e., the model is selected from a hypothesized model family), the 
accuracy of the model is evaluated by its ability to predict its output variable(s) 
from its input variable(s) on held-out input variable settings (i.e., values of 
the input variables that were not used to fi x the model parameters). That is, 
the test is generalization within the domain (e.g., S) of the model, where gen-
eralization can be defi ned as tests of increasing distance from the inputs used 
to determine the parameters of the model (aka training data). In addition to its 
predictive accuracy (generalization), the model might also be judged by its el-
egance or simplicity (e.g., amount of training data needed to specify the model 
parameters), the degree to which the model components correspond to known 
neuroanatomy, and/or the minimum description length of the model.

For a given stimulus domain (S) and behavioral domain (B) and proposed 
intermediate (hidden) neural population vectors, nearly all models in systems 
neuroscience can be placed into one of these paradigms: encoding, transform, 
modulated transform, decoding. Note that this is a very general and inclusive 
framework for common ground, as it leaves open the questions of timescales, 
dimensionality, model families to be considered, etc. The defi nitions are also 
broad enough to include instantiated neural network models of all existing 
potential normative theories:  predictive  coding,  generative models,  Bayesian 
 inference, etc. Each of these choices might be highly specifi c to an area of 
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conceptual study, though it is hoped that groups working in similar domains 
(e.g., recurrent sensory systems) might build and test some common model 
families so that model families that naturally work well (highly accurate in 
predictions) in more than one sensory system (albeit with potentially different 
model parameters in each case) will be readily discovered.

To fi t such a model, parameters do not need to be estimated entirely via em-
pirical data (e.g., neural responses and/or behavior). Indeed, the currently most 
accurate (predictively accurate) models of the primate ventral visual stream 
were discovered by fi tting the parameters of a global model that includes 
each of these model types: encoding, transform1, transform 2, transform 3,…
transform 6, decoding. Notably, the parameters of each and every one of those 
component models were fi t entirely from a large number of pairs (s, b) drawn 
from a large domain S (images in the central ten degrees) and B (category re-
ports). The internal “neural” populations of these deep  artifi cial neural  network 
models turned out to be highly predictive (over new s’s taken from S) of the 
responses of the internal neural population vectors (n) at multiple stages of the 
ventral stream (n[IT], n[V4]) (Yamins et al. 2013, 2014) and n[v1] (Tolias et 
al. 2001). Critically, that success was enabled because the mapping from S to B 
was chosen in a way to make the tasks computationally challenging (invariant 
object categorization). This thus appears to be an example of  convergent  evo-
lution—artifi cial neural networks for visual processing have “evolved” (under 
human organized optimization pressure) to have internal representations that 
look very much like the brain’s internal representations. Stepping back, the 
organizing point is that models which map from S to n are all examples of 
encoding models (above), and the goodness of these models is not judged on 
just capturing data, but on predicting new data. Such models are still far from 
complete, even in the visual system.

We note that encoding models that take high-dimensional sensory data 
as input naturally contain notions of receptive fi elds (RF, i.e., fi elds can be 
measured by doing virtual electrophysiology on the model, or by tracing the 
connections in the model). However, these encoding models are much more 
accurate (at predicting their population vectors (n) than the basic RF encoding 
model (also see below on the limitations of  tuning curves). Thus, while the 
concept of a RF is still a useful teaching concept that can predict some aspects 
of any neuron’s response, it is not a very accurate encoding model.

In that regard, we note that current encoding models are still not able to 
explain all aspects of the neural responses, most notably, many current encod-
ing models lack temporal dynamics. And modulatory transform models have 
not yet been incorporated in any serious way. Testing new encoding models in 
that expanded family of  recurrent artifi cial neural networks is ongoing work 
in multiple groups (i.e., causal neural mechanistic models), and we hope that 
those model families will be informed by the discussions and the data pre-
sented at this Forum.
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It is useful to consider encoding and decoding in terms of statistics as well 
as from a communication/information perspective. As an example, consider 
the classic behavioral paradigm of  locomotion. Suppose we want to predict 
the phase of locomotion based on the fi ring rate of a single, isolated afferent 
fi ber from a cutaneous pressure receptor in the skin of the foot (Werner and 
Mountcastle 1965). If we assume a quasi-steady state (e.g., walking at a con-
stant speed on a treadmill), we should be able to make a step-phase prediction 
with some degree of accuracy. If the afferent fi red a graded volley of action 
potentials that appeared as a single bump in an event-triggered histogram be-
ginning 10 ms after foot-strike, one could try to match an instantaneous fi ring 
rate to a phase of the step cycle. However, even if the fi ring rate pattern was 
exactly the same for each step, that prediction would be uncertain, because the 
same fi ring rate occurs twice for each step (except at the top of the bump). The 
histogram can be thought of as a probability distribution (probability of fi ring 
at a time point during the step cycle). So, acting as an ideal observer under 
ideal conditions, you would have a 50% error rate. In more realistic situations, 
where the behavioral state is not limited to isolated walking on a treadmill, that 
skin stretch receptor is being activated continuously in many different behav-
ioral contexts. Predictions of behavior based only on observing that afferent’s 
fi ring rate would be very poor.

This thought experiment was based on a single primary afferent. In gen-
eral, neurons are driven by many different sources. For example, neurons in 
the  motor cortex have been shown to carry information about ten different 
components of arm and hand motion simultaneously (Wodlinger et al. 2015). 
These components include the velocity of the hand as it moves through 3D 
space, orientation of the wrist, and shaping of the fi ngers. Because of the high-
dimensionality of this encoding, the same discharge rate is associated with 
many different weighted combinations of these parameters. Fortunately, better 
decoding (i.e., better ability to predict action) can be achieved by observing the 
fi ring rates of many neurons simultaneously. Even though parameter encoding 
by individual neurons is redundant, the bias of each neuron’s fi ring rate to a 
particular combination of these parameters (i.e., its “tuning”) is specifi c. This 
uniqueness of a neuron’s tuning function makes it possible for extraction al-
gorithms to decode parameters encoded simultaneously in single-unit activity. 
Furthermore, parameters that are weakly encoded by individual neurons, but 
have a consistent effect on the fi ring rate of many members of the population, 
can be extracted with these algorithms. This general principle is why popula-
tions of neurons are needed for more successful prediction of behavior from 
neural population.

While successful prediction of behavior (i.e., “decoding” by an observer) 
can add support to the inference that the recoded neurons are causally linked to 
the behavior in a neural mechanistic manner, such success does not guarantee 
that it is the correct inference. How might that inference be strengthened? We 
see two ways: First, requiring an ever more detailed prediction of the specifi ed 
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behavioral domain (B, Figure 13.1) should tend to show the limitations of in-
correct causal inferences (i.e., incorrect decoding models as shown in Figure 
13.1). This cannot prove the causal link, but it could still lead us to the correct 
 neural mechanistic model that intervenes between the neural activity and the 
behavior. Second, direct perturbation of the recorded neural elements (e.g., 
silencing of multiple, targeted individual neurons) should produce behavioral 
effects that are precisely predicted by the decoding model. Ever more detailed 
perturbations can again be used to lead us to the correct neural mechanistic de-
coding model. Both approaches should ideally be applied to the brain subsys-
tem under study. The larger point to keep in mind is that decoded information 
emerging from the processing of neural data, no matter how accurate it may 
be, does not guarantee that this information is used by the nervous system. It is 
only a starting point to a very large family of neural mechanistic causal mod-
els, and those causal relationships—and thus the most veridical models—are 
likely to be highly complex.

We can illustrate this type of problem with the walking experiment. Within 
this task are a series of behavioral events (e.g., a trigger cue, onset of move-
ment, target acquisition, reward administration). A peri-event histogram of the 
skin afferent’s fi ring rate, triggered on one of the behavioral events, will have 
a structure (e.g., a bump) representing the probability of the afferent having an 
 action potential at a point in time relative to the event. In terms of communica-
tion theory, because there is a correlation between the event and the fi ring rate, 
there is information (reduction in uncertainty) being transmitted between the 
event and the neuron’s fi ring rate. This relation can still be very noisy and may 
not mean that there is any kind of direct synaptic connectivity (direct causal 
relation) between the event and the change in fi ring rate. This is an important 
point, has led to a great deal of confusion, and is often contentious. Walking 
is a cyclic behavior in which the entire body oscillates with a period equal to 
the step-cycle length. Every part of the skeleton, every somatic pressure sen-
sor, visual and auditory input, almost all muscles, and probably most neurons 
are going to be entrained by this periodic behavior. A histogram of almost any 
neuron’s fi ring rate will show some kind of structure. That neuron is therefore 
transmitting information encoded as fi ring rate through the step cycle even 
though it is unlikely to be linked by any direct “circuitry” to the neural source 
driving  locomotion. The foot receptor transduces pressure and, when activated 
by stretched skin, is “causing” the neuron to fi re, but whether the signal in our 
afferent fi ber is transmitted in a way that is decoded subsequently is unknown. 
Simplistically, we can record the fi ring rate from neurons in many other parts 
of the nervous system and those rates will be highly correlated to that of our 
afferent. This in no way means that our afferent is “causing” those other neu-
rons to fi re.

Given the defi nitions of encoding models and  decoding models above, then 
a neural “code” is conceptually defi ned as a particular measure of information 
somewhere in the brain that is both a product of an encoding model and an 
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input to a decoding model. In this formulation, the job of alternative decoding 
models is to specify what measure of information is causally critical (to a do-
main of behavior) and how it is causally critical (to that domain of behavior). 
And a key job of alternative encoding models is to explain and predict that 
information using neural mechanistic causal linkages from sensory epithelia to 
the specifi ed measure of neural population activity. That is, a putative neural 
“code” is specifi ed with respect to the knowledge of (or at least the hypothesis 
of) the downstream causal circuitry. In the next section, we provide another 
perspective on neural codes from the perspective of communication theory, 
which also relies inherently on the notion of a combined encoding and decod-
ing model.

Coding from a Communication-Theoretic Perspective

The concept of a “code” is one of the most commonly used terms in the neuro-
sciences. Outside the neurosciences, we usually mean something very specifi c 
when we refer to a “code” or “coding”; these concepts have been formalized 
in communication and  information theory. In the neurosciences, we have often 
a much more rudimentary notion of a “code”: Does the communication theo-
retic notion of coding make any sense for the brain, and to what extent? What 
are the gaps in our knowledge about the “neural code”? Looking at various 
levels in the nervous system (retina, V1, M1) we see that in some cases the 
communication theoretical approach is sensible (retina), in others it is by ap-
proximation (V1), and in others becomes highly problematic (M1). Is it time 
to abandon the notion of a “code” because it erroneously carries with it all the 
communication theoretic baggage and the notion of “representation,” or can 
we use this baggage?

Using concepts of information and communication theory, we can specify 
a number of conditions for coding in the classical communication theoreti-
cal sense and differentiate this from a more rudimentary concept of a code 
in the sense of merely containing information. We will distinguish two types 
of codes:

• Code Type 1: A code in the communication theoretical sense, which we 
call a  coding algorithm.

• Code Type 2: A code that depends on the human observer, treating 
the link between the encoded variable and neural response as a virtual 
 communication channel. A code in this sense means to contain infor-
mation or, in other terminology, to have a  tuning curve (see below).

There are fi ve conditions for a Type 1 code in the communication theoreti-
cal sense:

• Condition 1: The sender receives some data.
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• Condition 2: The sender encodes this data with a series of symbols 
(e.g., bit sequences), a “code,” in a systematic manner (according to 
an algorithm).

• Condition 3: This achieves some transmission or storage goal.
• Condition 4: This code is constructed in a way that achieves data com-

pression and allows error correcting at the receiver site (to solve the 
two practical problems that bandwidth is limited and communication 
channels are noisy).

• Condition 5: Finally, there needs to be some receiver (decoder) that 
can “understand” and do something meaningful with the transmitted 
symbols (e.g., decode the original signal or perform some action based 
on the message).

If such a model applies, then this permits us to use a powerful toolbox of tech-
niques from communication theory to analyze the system. It also allows us to 
think about representations as a  coding algorithm as well as to better under-
stand other computational frameworks, like  deep neural  networks (Shwartz-
Ziv and Tishby 2017). The defi nition of a Type 1 code makes clear that for the 
nervous system, we need both the notion of a “receptive fi eld” and a “projec-
tive fi eld” (Lehky and Sejnowski 1988); in our terminology used earlier, we 
need both an encoding and a decoding model. Below, we will further examine 
how the concepts of a Type 1 code apply to the nervous system (visual and 
motor system) and evaluate what limitations and gaps in our knowledge exist.

Usually, when neuroscientists talk about a “code” they take a stimulus (S), 
some neural activity (R), and compute a mutual information function I(S;R) (or 
any other measure of dependence) to demonstrate that R “encodes” S. However, 
this is not equivalent to a demonstration of the existence of coding in the com-
munication theoretical sense; it merely provides a generic measure of statistical 
dependence and shows that R contains information about S (Code Type 2). The 
fact that neural activity contains information does not mean that this informa-
tion is being used or that the information can be easily decoded. Nevertheless, 
the exercise of quantifying whether neuronal populations contain information 
and which algorithms work best to decode generates very useful hypotheses 
about whether these neuronal populations may “encode” in the Code Type 1 
sense and which algorithms the neural decoder may use. This is also important 
for constructing  brain–computer interfaces (Schwartz et al. 2006).

Coding in the Visual System

It has proven fruitful  to model responses  of photoreceptors or neurons in the 
retina as encoding the image that falls on the retina: The retina transforms the 
received image (Condition 1) in another signal, in a systematic way (electri-
cal impulses/currents, organized topographically) (Condition 2), to achieve 
some goal (transmission of information about this image to the cortex over 
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a channel with limited bandwidth and some noise) (Condition 3). The code 
is constructed according to some smart principles, achieving data compres-
sion (e.g., removing redundancies between pixels; Schwartz and Simoncelli 
2001) (Condition 4), and there are receivers that understand the message and 
do something meaningful with it; namely the superior colliculus and the LGN, 
ultimately leading to behavior (Condition 5).

Whether and/or how the concept of coding applies to cortical areas like 
primary visual cortex or area IT remains far from clear. First, what does V1 
encode (Condition 1)? Area V1 does not only encode the image on the retina 
but is sensitive to many other internal and external variables, such as arousal, 
movement,  attention, and other sensory modalities (McAdams and Maunsell 
1999; Niell and Stryker 2010; McGinley et al. 2015b; Stringer et al. 2018). In 
addition, V1 might not just encode the image on the retina but perform a type 
of  Bayesian  inference about the causes of the sensory data using priors and 
expectations (Rao and Ballard 1999; Friston and Kiebel 2009).

Second, how does V1 encode the data (Condition 2)? The population rate 
vectors are commonly assumed to form the coding substrate. However, it has 
not been demonstrated that they yield a “complete” representation of the im-
age on relevant behavioral timescales (see, e.g., Van Rullen and Thorpe 2001; 
Resulaj et al. 2018), and there is evidence that there is additional stimulus 
information encoded in  spike timing (discussed further below). Furthermore, 
we do not know which spikes are part of the code that is transmitted to other 
areas and which spikes are merely part of the coding process (e.g., spikes from 
interneurons), nor do we precisely understand the role that correlations play in 
coding. To make matters more complicated, there is an abundance of spontane-
ous (“dark”)  activity (discussed further below) that does not seem to encode 
any sensory information, and there exists tremendous state variability in sen-
sory responses (Harris and Thiele 2011; McGinley et al. 2015a).

Third, what are the coding design principles in area V1 (Condition 4)? 
There is evidence that V1 receptive fi elds are optimized for sparse coding, and 
processes such as surround modulation have been interpreted from the per-
spective of effi cient coding (Olshausen and Field 1996; Rao and Ballard 1999).

Fourth, who is the receiver of V1 information and what does this receiver do 
(Conditions 3 and 5)? There are many receivers of V1 information, including 
cortical areas (V2, V4, MT) and subcortical areas (e.g., cerebellum,  striatum, 
superior colliculus). Cells may transmit different information depending on 
cortical/subcortical projection targets (Lur et al. 2016). Furthermore, it remains 
largely unclear which information in V1 responses is being used by which re-
ceiver and for what purpose. Finally, there are strong recurrent interactions be-
tween V1 and V2–V4, meaning that the (hierarchical) model of a unidirectional 
 communication channel with a separable sender and receiver breaks down.

If we move forward to areas like IT (or a deep layer of a neural network), 
then one could say that the “neural code” (Type 1) becomes increasingly more 
“usable” higher up in the processing hierarchy, in the sense that it becomes 
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easier to do something meaningful with it (e.g., a face-selective IT neuron 
or hippocampal place cell), although there’s inevitable data loss compared to 
lower areas (data-processing inequality). This process can be thought of as a 
series of “unfolding” transformations that create increasingly linearly separa-
ble manifolds, corresponding to object categories, in high-dimensional spaces 
(e.g., Chung et al. 2015). The quantifi cation of how “usable” and effi cient a 
code is might be critical to interpret the signifi cance of mutual information 
quantifi cations between stimuli and neural responses. For instance, we can, in 
principle, decode object categories more accurately from the retina than from 
area IT (data-processing inequality). This does not mean that the receiver of 
the retinal output uses this information to make decisions about object catego-
ries and act upon them. However, information about object categories, and the 
image in general, can be easily decoded from activity in area IT and is highly 
compressed.

Coding in the Motor System

Turning toward  the motor system, it becomes apparent that the notion of a 
communication theoretical code (Type 1) becomes problematic for many rea-
sons. Information about many different movement parameters is present in 
the fi ring rates of motor cortical neurons. This information is encoded in the 
 motor cortex. The problems begin with how the information was encoded: Did 
the encoding occur before arriving in the motor cortex, in local circuitry, or as 
input to the particular neuron, whose  action potentials are being recorded? The 
time-varying values of different movement parameters tend to be correlated, 
refl ecting the complex mechanics of movement where many degrees of free-
dom vary simultaneously. M1 neurons have high-dimensional  tuning curves, 
so that the fi ring rates of individual neurons contain information about many 
of these parameters. This makes it diffi cult to parcel the encoded information 
into separate categories. Although the motor cortex is often considered to be 
composed of upper motoneurons projecting to the “fi nal common pathway” 
(Sherrington 1906), in reality, it is one of many inputs to the subcortical neuro-
nal substrate of muscle contraction. This presumed role of the motor cortex in 
muscle contraction has fostered historical controversies pertinent to the idea of 
whether  decoding takes place at all in the projection targets of these neurons. 
As an extreme example, if motor cortical neurons function merely as upper 
motoneurons, then the information contained in their fi ring rates does not need 
to be decoded at all, since the putative role of these neurons is solely muscle 
activation. In contrast, if the encoded information is pertinent to more cogni-
tive issues, such as the intended action of a hand on an object, then for this 
information to be realized as behavior output, “decoding” must take place as 
it is transformed by “downstream” structures to “cause” muscle contraction.

Further examination of implicit assumptions might help focus these issues. 
There is a general tendency in neuroscience to view the nervous system as 
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discrete, separate components. This stems from historic anatomical descrip-
tions of the system as well as the clinical observations underlying neurology 
and neuropsychology, which focus on fi nding localized lesions in the system. 
Furthermore, since the industrial age, we have become comfortable with the 
idea of machines composed of individual parts, each with a specifi c function. 
These factors come together to reinforce the general simplistic notion of cause 
and effect that underlie most functional descriptions of nervous system op-
eration. Structure A projects to Structure B, contributing excitatory input to 
B’s neurons, and these are diagrammed as sticks with plus and minus signs 
between boxes for each structure. Of course, these “circuit” diagrams rapidly 
increase in connections as more results are added, but the boundaries between 
the boxes remain fi xed even as the number of sticks increases. Although it is 
obvious that many inputs interact to “cause” an output, such consideration is 
usually set aside to “simplify” neural functioning, keeping functional descrip-
tion within the bounds of simple  causality.

This predilection toward simplistic causal circuitry is manifest in classic 
 visual system neurophysiology. Here the concept of hierarchical organiza-
tion prevails. Processing starts in the retina where coding begins, and rods 
and cones pixelate the visual scene. The pixel information is then transmitted 
to subcortical and cortical structures. As this information traverses successive 
brain structures, it is transformed successively. The concept here is that visual 
information is molded into a coherent image, one that is ultimately realized as 
a perceived, accurate description of the world. This concept originated with 
Hubel and Wiesel. They found that neurons in the cat  thalamus and visual cor-
tex had receptive fi elds of various complexity and hypothesized that increased 
complexity resulted from successive stages of processing. This concept pre-
vailed in ensuing years during which researchers found that neurons in cortical 
areas anatomically farther from V1 seemed to have response properties that 
encompassed a wider set of visual fi lters. This was the motivation for attempts 
to organize the multitude of vision-related cortical structures into a coherent 
framework. Van Essen and colleagues developed a set of anatomical criteria 
to delineate different vision-related structures and to categorize the anatomi-
cal connections between them (Felleman and Van Essen 1991). Of particular 
relevance here was the idea that projections originating only from superfi cial 
cortical layers and terminating in layer 4 of the target area transmitted infor-
mation in the forward direction, whereas those coming from both deep and 
superfi cial layers terminating outside layer 4 were receiving feedback informa-
tion. In this case, forward means ascending the hierarchy with feedback in the 
opposite direction. Felleman and Van Essen (1991) considered the diffi culty 
of resolving reciprocal and lateral connectivity into the scheme and suggested 
that hierarchical structure could exist even without stepwise serial processing. 
For this reason, they extended the basic anatomical criteria and added a third 
category of lateral connectivity to build the canonical  Felleman–Van Essen 
diagram. This scheme consists of boxes, corresponding to specifi c structures, 
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vertically arranged into hierarchical levels. The arrows connecting the boxes 
are based on anatomical tracing data.

Although this notion of hierarchy was inferred from neurophysiological 
experiments of function, in the  Felleman–Van Essen diagram, only anatomi-
cal criteria were used. From a functional standpoint,  reciprocal connectivity is 
not easily resolved into a fl ow of information. In terms of causation, the rela-
tive timing of discharge between interconnected sites might be indicative of 
transmission direction. As has become apparent from cross-correlation studies 
(Moore et al. 1966; Perkel et al. 1967; Gerstein and Perkel 1972), however, 
simple causal interaction between pairs of neurons is very rare. This issue is 
exacerbated with box-and-arrow diagrams, suggesting that information is pro-
cessed in successive hierarchical levels with well-defi ned borders, implying 
that information enters as discrete input and leaves as transformed output with 
the complete operation taking place within the confi nes of the structures com-
prising that level. This logic is engrained in theories of sensory processing. 
In terms of encoding and decoding, this theme would suggest that input to a 
processing stage would need to be decoded and then encoded as output trans-
mitted to the next stage.

This conceptual framework is diffi cult to apply to motor systems. 
Continuing the hierarchical logic, the general inference is that raw sensory 
input is processed successively to form a consciously perceived percept of the 
world. This takes place in well-defi ned anatomical structures, and according 
to the Felleman–Van Essen diagram, the  hippocampus is the pinnacle where 
the percept crystallizes. From there, other cortical operations take place lead-
ing to a well-formed decision to achieve a particular goal. The goal is then 
transmitted to the motor system to produce the movement that achieves that 
goal. However, to fi nd evidence for this scheme, it is necessary to identify the 
input to the system. Support for this type of post-decision signaling has proved 
elusive. Furthermore, many different anatomical structures project to the mo-
tor system and these projections do not follow a successive  sequence of clearly 
defi ned serial processing steps.

Similar problems underlie the controversies of whether the primary motor 
cortex (M1) functions directly and primarily to generate muscle contraction or, 
instead, in the formulation of higher-level behavioral  planning that gets trans-
formed to muscle contraction as it “descends” a hierarchical structure to spinal 
motoneurons. Anatomical evidence shows that a small component of M1 out-
put projects directly to spinal motoneurons and historic electrical stimulation 
of M1 results in somatotopic muscle contraction, which would support the idea 
that M1 functions to contract muscles. The counterargument is supported by 
recording experiments that extract movement information related to the veloc-
ity of the arm, wrist, and fi ngers during movement (Wodlinger et al. 2015). 
In the reverse hierarchical scheme, this would be “downstream” from muscle 
contraction in terms of execution (muscle contraction “causes” limb displace-
ment), but “upstream” when considered as a plan (muscles are contracted to 
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make the arm move according to a plan). Since this information appears in 
the  motor cortex well before muscle contraction, this could support the argu-
ment that M1 functions in high-level movement  planning. It should be noted 
that signals refl ecting muscle EMG can also be extracted from M1 activity 
(Humphrey 1986; Townsend et al. 2006; Pohlmeyer et al. 2007) which further 
clouds this argument. At this point it is useful to reinforce the  distinction be-
tween coding and code. The ability to extract muscle or movement informa-
tion from M1 activity shows that this information exists and has been encoded 
(somewhere). What it might be used for (i.e., where it is being decoded) is a 
separate issue. As for the information content, there are at least two explana-
tions for how muscle and movement information can be extracted from the 
same population of neurons. First, the disparate information may be encoded 
in a high-dimensional space, as seems to be the case for at least ten different 
kinematic parameters (Wodlinger et al. 2015). In this case, the muscle and 
kinematic parameters would simply occupy different dimensions. Second, the 
muscle and kinematic parameters are correlated (Todorov 2000; Reina et al. 
2001; Scott 2003). This would suggest that both parameter sets share a single 
input source and that M1 activity is also related to that source. A subsequent 
“decoding” stage that separates these parameters may not even be needed, if 
the common muscle-kinematic signaling is formatted to contribute to muscle 
excitability.

The idea of hierarchy comes into play again in these issues. Area M1 may 
not be a singular node where information converges in an exclusive sense; this 
convergence may occur only in the executed movement. Instead, information 
about movement may be highly distributed throughout many interconnected 
structures of the motor system (and probably other parts), making it diffi cult 
(and perhaps improper) to designate a neural signal as an input or output. Since 
synaptic integration is a fundamental property of nervous systems, and in mam-
mals there are typically thousands of converging dendritic inputs and as many 
diverging axonal terminals, the ability of any single or small group of synapses 
to “cause” a downstream event is small. This means that simple cause-and-
effect arguments have limited utility in explaining function. It is important to 
consider the nervous system in its actual complexity and to realize that conven-
tional concepts of discrete circuitry based on straightforward causal logic has 
placed severe limits on our understanding of the nervous system.

Conclusion

In practice, for the vast majority of neuroscience studies, we are still at the 
stage of fi guring out what information neuronal populations  contain on lon-
ger timescales; the many unknowns stipulated (e.g., information on short 
timescales,  goals of encoding, relevant receivers, design principles, which 
information is actually being used, distributed representations, assumptions 
about hierarchy) imply that by and large we do not know what the neural 
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code (Type 1) is, and how useful the  communication channel model will 
prove to be for different systems. Other models that have been successfully 
able to model neuronal responses, like  deep neural  networks, do not have any 
inherent notion of  coding in the communication theoretical sense, although 
coding concepts have been used  to improve our understanding of what these 
networks actually do (Shwartz-Ziv and Tishby 2017). If progress is to be 
made, future efforts will need to go beyond quantifying what information is 
contained, to quantifying what information is actually being transmitted to 
whom and for what use.

Generalization to New Conditions and Failures Thereof

Encoding/ decoding  models, such as those described above, may fi t the data 
they were trained on, but might not necessarily generalize; that is, they may not 
predict responses to new stimuli that have not been previously tested. We illus-
trate this point with an important failure of such generalization, using a situa-
tion which, according to the textbook understanding of vision as a feedforward 
representation of aspects of the retinal image, should not occur.

Since the pioneering work of Hartline, Kuffl er, Hubel, Wiesel, and others 
(see Spillmann 2014), the notion that visual neurons have receptive fi elds an-
chored to particular positions on the retina has been a fundamental concept un-
derpinning of visual neuroscience. Thus, measurement of the receptive fi eld’s 
position under one set of conditions might be expected to generalize accurately 
to the position of the receptive fi eld tested under other conditions.

In structures such as V4, FEF, and parietal cortex, however, this generaliza-
tion has not held. When the eyes move or maintain fi xation at different orbital 
positions, the retinal location of the receptive fi eld can shift to novel positions. 
The new receptive fi elds appear on varying timescales and may be either tran-
siently present in conjunction with a change in eye position or exist stably for 
the duration of an epoch of fi xation.

This fi nding has important implications for what needs to be included in 
models of encoding of visual information and suggests that the “label” on 
the line for such neurons is not an exact match to single particular retinal 
or eye-centered locations. Instead, eye position/movement is one aspect of 
the full “context vector” that needs to be incorporated into predicting how a 
neuron will respond under novel circumstances. Other factors in that context 
vector include  attentional state, arousal, task context, recent stimulus history, 
stimuli from other modalities, and no doubt many as yet unexplored sensory 
and cognitive factors. We describe these variables here using human intuitive 
phrases, but ultimately they must be instantiated by aspects of neural archi-
tecture and neural fi ring, for which we do not yet have intuitive access (e.g., 
“ng” in Figure 13.1).

Other examples come from earlier work in the visual system, in V1, where 
what is encoded depends critically on stimulus confi guration. This challenges 
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the concept of receptive fi elds: a simple cell, for example, will have unpre-
dictable responses when challenged with complex scenes. Since the space 
of possible contextual modifi cations is close to infi nite, there is no canonical 
defi nition of a receptive fi eld. The same problem will hold for representations 
in general: they will change as a function of the content to be represented 
(encoded). This inability to establish 1:1 mapping will also pose problems for 
the analysis of the relation between a code and the respective behavioral conse-
quences (as in decoding models, see Figure 13.1). We expect these challenges 
for models that link neural activity to behavior (i.e., decoding models) to be 
most severe at intermediate levels of processing, but to diminish as one builds 
decoding models that take as their input neural responses that are closer to the 
motor effectors (muscles) (see “b(t)” in Figure 13.1).

On the whole, we cannot at present assume that assessments of visual cod-
ing at the individual neuron level measured in one task will necessarily gener-
alize to another.

Reliability, Stability or Generalizations to Repetitions of the 
Same Conditions: Inferring the Stimulus from the Activity

Another widely recognized problem is that even repeating the same conditions 
does not produce the same activity pattern. This variability in neural fi ring is 
often referred to as noise, but it is increasingly understood that what appears as 
noise to the experimenter is not necessarily noise to the brain but could refl ect 
signals related to aspects of the environment or state of the organism that are 
not under experimental control.

Put another way, this variability means that one might not be able to reli-
ably predict the fi ring pattern of the population from the stimulus. Another 
way of asking the question is whether the stimulus can nevertheless be inferred 
from the neural activity, despite this variability. Judging the type of informa-
tion present in a neural population in this manner provides insight into what 
knowledge an organism has access to.

Reliability, in general, is defi ned as an invariance of a classifi cation or iden-
tifi cation of a state in the presence of some kind of perturbation. This perturba-
tion can result in a change of the code or representation, as a consequence of 
noise or unknown states of the system. Reliability of a representation charac-
terizes the ability to identify the encoded information from noise-perturbed 
observation.

In contrast to reliability, stability refers to a change of the representation 
over time. Often a stable code is understood as a constant encoding model. 
Additionally, stability has been defi ned as an error correction property that 
reduces the noise of a perturbed system. This defi nition has often been 
used for dynamical systems that show dynamics governed by attractors of 
some kind.
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What Signals Constitute the Code or Are Relevant for 
Information Transmission?

That spikes are central elements of information transmission supporting  mo-
ment-to-moment behavior seems beyond dispute. In recent decades, it has 
also become clear that there are temporal aspects to neural response patterns, 
and these temporal aspects can have powerful implications for information 
transmission between ensembles of neurons or between brain regions. The 
functional importance of  spike timing has been explored in the following 
contexts:

• The transmission of information between neuronal populations.
• The encoding of information through relative timing among neurons, 

or to some external event.
• The formation of memories through spike timing-dependent plasticity 

(STDP) (see also Singer, this volume).

 Synchronization can modulate information transmission through enhanced in-
tegration of EPSPs, as well as through dendritic nonlinearities (Salinas and 
Sejnowski 2001). Furthermore, synchronous volleys of excitatory inputs may 
effectively escape from  feedforward inhibition (Fries 2015). Coherence be-
tween sending and receiving neuronal populations may bias information trans-
mission by aligning the arrival of input spikes with windows of opportunity in 
the receiver (Fries 2005). One view is that information is encoded through  pop-
ulation rate coding, but that the transmission of information is modulated by 
 synchrony and  coherence among neuronal populations, according to cognitive 
demands (Fries 2005). Support for selective information transmission accord-
ing to cognitive demands comes from the fi nding that  attention selectively and 
strongly modulates the inter-areal coherence in the gamma-frequency range, 
between areas V1 and V4 (Bosman et al. 2012). There is, however, ample 
evidence for encoding of information through spike timing. For instance, hip-
pocampal CA1 place fi elds carry place information both through rate changes 
as well as through the spike phase relative to ongoing theta oscillations (Huxter 
et al. 2008). A similar phenomenon, in the gamma-frequency range, has been 
demonstrated in visual and  frontal cortex (König et al. 1995; Siegel et al. 2009; 
Vinck et al. 2010; Havenith et al. 2011). Finally, the existence of STDP mecha-
nisms shows that the timing of pre- and postsynaptic spikes critically governs 
 synaptic plasticity formation (Markram et al. 1997; Sejnowski and Paulsen 
2006). In  hippocampus, neural activity shows extremely synchronous behavior 
during sharp-wave ripple complex, with sequential activation patterns mimick-
ing the sequential activation of neurons during  spatial navigation. These pat-
terns are thought to be important for the consolidation of  episodic  memories, 
and interruption of hippocampal activity during sharp-wave ripples impairs 
spatial  memory formation (Girardeau et al. 2009) as well as place fi eld stability 
(Roux et al. 2017).
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Relevant temporal dynamics can also be non-oscillatory. Examples of com-
plex but not necessarily  oscillatory dynamics include insect  olfactory system 
(Wehr and Laurent 1996), leech motor decision making (Briggman et al. 2005), 
rodent hippocampal system/replay (O’Keefe and Recce 1993), birdsong mo-
tor system (Hahnloser et al. 2002), and primate motor cortex (Churchland et 
al. 2012; Mante et al. 2013; Suway et al. 2018). The concept of an “oscilla-
tion” in general suggests a static and clock-like behavior that does little justice 
to the nonstationary nature of neural activity (Burns et al. 2011; Xing et al. 
2012) as well as to the spatiotemporal dynamics from which these “oscilla-
tions” are often the result. What appears to be an oscillation in recordings on 
single electrodes is often a traveling wave on arrays of electrodes (Gelperin 
and Tank 1990; Kleinfeld et al. 1994; Tank et al. 1994; Lubenov and Siapas 
2009; Muller et al. 2016). However, as discussed by Singer (this volume), both 
empirical studies and simulation experiments indicate that the nonstationary 
and transient features of oscillations are actually advantageous for  information 
processing and dynamic routing of neuronal activity. The underlying spiking 
activity is sparse, in contrast to the dense traveling waves in epileptiform activ-
ity (Muller et al. 2018).

Codes, Constancies, and Control of Behavior

The behavioral responses evoked by a sensory stimulus may be relatively 
rapid, simple, and stimulus-locked, such as an eye movement bringing the fo-
vea to bear on a visual stimulus of interest. Alternatively, they can be slower 
and the consequence of an extended period of internal and covert processing 
involving a multitude of factors, such as a real-world decision to attend one 
university over another.

Even for comparatively simple behaviors that lend themselves to laboratory 
study, there is likely redundancy in the code and degeneracy in the relation-
ship between activity patterns and behavioral outcomes. For instance, there are 
many different ways to achieve the same action on the environment. Consider 
an arm that has 4 degrees of freedom (DOF) from the shoulder to the wrist: 
to reach in 3D space, there are more DOFs than movement dimensions. This 
means there is an infi nite combination of DOFs that will achieve the same 
endpoint movement. However, psychophysics shows us that we tend to use the 
same combinations (approximately) in a reliable way.

Certain DOFs tend to be linked or correlated during movement. Why this 
happens is not always due to mechanical or anatomical constraints as some 
can be violated volitionally. These invariants refl ect a “choice” made by the 
system. For  motor control, these choices seem to refl ect control effi ciency, 
minimizing the amount of information that needs to be transmitted to accom-
plish a goal. This general concept is usually attributed to Nikolai Bernstein 
(1967), who studied the structure of movement using an early form of video 
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motion tracking. Bernstein articulated the concept of “motor equivalence” in 
which the same movement could be produced in many different ways. He used 
drawing movements as a prime example and emphasized the difference be-
tween metrics and topology. His examination of repeated drawings showed 
that the metrics of the drawn object varied between repetitions, but that the 
shape of the object (topology) as drawn by the same individual was constant. 
Furthermore, if that object was drawn on a table top or blackboard, the per-
sonal topological features remained consistent. This was also true if the object 
was drawn with the dominant or nondominant hand. Although the set of effec-
tors (muscles and joints) varied greatly, the behavioral outcome (the drawn ob-
ject) was the same. Bernstein then used these fi ndings to discuss locationism in 
the nervous system. Since topology was invariant, he argued that this was the 
dominant organizing principle of motor function. Thus, topological features of 
the movement would be expected to have an anatomical constancy instead of 
muscles. He proposed a thought experiment in which neural activity could be 
observed in the brain. If muscles were localized in the brain, then there would 
be complicated zig-zag patterns of activity across the cortex because muscular 
activity is highly variable between movements. If that was the case, he asked, 
what would be the advantage of having neurons spatially segregated according 
to the muscle they activate?

Indeed, experimental results show that extracting movement trajectories 
of the arm and hand from  motor cortical activity during reaching and draw-
ing is straightforward and robust (Georgopoulos et al. 1986; Schwartz 1994). 
Population decoding of these movements is the basis for neural prosthetics. In 
contrast, extraction of the muscle activity taking place as the arm moves freely 
through space has proven to be much more diffi cult. Such generalized motor 
representations bear a resemblance to constancies that are familiar in sensory 
processing, such as our ability to assess color as a comparatively stable object 
property despite variation in the wavelengths that reach our eyes under dif-
ferent illumination conditions, or the perception that the world is not moving 
despite massive shifts in the retinal image with every eye movement.

The Single-Neuron Tuning Curve: A Motivating Idea Whose 
Time Has Passed?

Single-unit neurophysiology  has,  over the past four decades, focused a great 
deal of effort on describing the responses of each recorded neuron to a set 
(typically ~20) of experimental conditions chosen at evenly (typically) spaced 
intervals along a single, predetermined physical dimension (typically inspired 
by pilot studies or by prior work). Classic examples include:

• Responses of V1 to the orientation of a visually presented light bar 
(e.g., Hubel and Wiesel 1962)
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• Responses of M1 cells during the performance of in-plane center-out 
arm movements (e.g., Georgopoulos et al. 1982)

• Responses of a visual area MT cell to the in-plane direction of vi-
sual motion

• Responses of “face neurons” in monkey inferior temporal cortex

In each case, a “tuning curve” (or tuning function) is determined by fi tting 
(e.g., least squares error fi t) the neural responses (dependent variable) with 
a smooth, low-parameter mathematical function of the value of prespecifi ed 
experimental axis (independent variable). The mathematical function chosen 
by the experimenter for fi tting typically has a single peak over the domain of 
the independent variable, which is taken to be the value of that variable that is 
predicted to give the maximum response for that unit (the so-called, preferred 
orientation). In the cases of discreet experimental conditions (e.g., “face neu-
rons”), the tuning curve is implicitly assumed to be a step function (e.g., on 
the X axis, the tested images can be plotted from left to right, where all images 
containing a face are to the right of the step up). Other parameters of the tuning 
curve are also typically computed and reported (e.g., the standard deviation 
of a Gaussian function can be taken as the orientation tuning width). In such 
studies, the values of these tuning curve fi ts are typically summarized over the 
entire sampled set of single neurons.

These single tuning curves have been very useful for at least three reasons: 
First, they demonstrate that individual neurons have response sensitivity over 
the measured variable (e.g., response sensitivity to the orientation of a drifting, 
full fi eld visual grating). Second, because of the smoothness prior implicitly 
contained in the chosen mathematical tuning functions (e.g., Gaussian, cosine), 
they predict how individual neurons will respond to similar conditions (e.g., 
orientations that were not tested; images containing faces that were not tested). 
Third, in some cases, the tuning curve can be used as a functional marker to ask 
if one is recording from a particular area (e.g., strong motion direction tuning 
as a functional signature of area MT).

It can be argued, however, that the tuning curve has outlived its scientifi c 
usefulness, although our group did not unanimously agree on this point. We 
note at least three key weaknesses: First, in all sensory systems, single neurons 
are clearly sensitive to experimental changes along many possible axes besides 
the one chosen by the experimenter. This is well known and attempts are often 
made to compensate for this by either relegating some of this “nuisance” sen-
sitivity to the methods (e.g., we fi rst found the receptive fi eld of the neuron, 
which is itself a tuning function over two dimensions) or handled by trying to 
test one or two other stimulus axes (e.g., orientation bandwidth, hue). While 
such attempts can be valiant, they always underestimate the complexity of the 
neural responses because the experimental condition space is very large (e.g., 
the dimensions of image space). Even more problematic, the ability of the 
experimenter to guess at the “best” experimental axis rapidly diminishes after 
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even just one nonlinearity in the neural processing (e.g., V2 in vision), and 
appears almost completely arbitrary once one reaches very deep levels of the 
processing (e.g., inferior temporal cortex in vision).

This constraint is closely related to the second serious limitation: tuning 
curves have very limited ability to predict the responses of individual neurons 
beyond interpolations of the specifi c conditions already tested (i.e., limited 
ability to generalize). Thus, by defi nition, tuning curves do not contain gener-
alized knowledge of the neuron’s processing function (i.e., the image-comput-
able encoding function in vision). Again, this problem gets dramatically worse 
the deeper one goes into the system (more nonlinearities).

A third major limitation of tuning curves is that they promulgate the idea that 
the goal of the fi eld is to discover the “optimal” stimulus of each single unit, as 
if the single neuron is a homunculus that can offer direct insight into questions 
of complex human behavior. This is clearly misguided in the contemporary 
context of  population coding, and we believe that even our contemporary ideas 
of population coding will look naive in another twenty years.

All three limitations are the result of the understandable desire of the ex-
perimenter (indeed, of the fi eld) to impose a human-interpretable prior on the 
responses of the neuron to help organize one’s thinking before reporting those 
responses to the world. Simply put, we would prefer it to be the case that neural 
responses can be reduced to a few dimensions of the domain of interest (e.g., 
the domain of all images) so that we can more readily communicate our fi nd-
ings—our “story” and our discovered “principles”—to other members of our 
species. As cognitive scientists, we deeply appreciate the social primate value 
of storytelling. But that is not the same as science that gauges its progress 
through accurate prediction of the phenomena of interest (e.g., neural spikes, 
behavior). We see no reason to assume that evolution has left us with an adult 
brain whose complex internals are readily communicated to other humans in 
such simple forms as tuning curves.

Fortunately, when we set the tuning curve aside, we do not need to go back 
to square one. We now have better methods of estimating much more accu-
rately (i.e., generalize to new images) the encoding functions of individual 
neurons using systems identifi cation methods combined with modern  artifi cial 
neural  networks that provide much more appropriate (highly nonlinear) encod-
ing bases (e.g., Yamins et al. 2013). These methods have rapidly spread in the 
visual system, and somewhat in the  auditory system. They have not yet been 
applied to all sensory systems or to motor systems, but much active work is on-
going and we expect these advances to continue apace. We also note that even 
these currently cutting-edge approaches will still be incomplete without in-
corporating models of how internal states (e.g., ongoing neural activity within 
the local population) predict neural responses during presentation of sensory 
stimuli (Dechery and MacLean 2018). Indeed, the most current encoding mod-
els for visual processing are still not able to capture the  temporal dynamics of 
visual system neurons.
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Zooming out, we also believe that the human desire for interpretability 
should not be forgotten but that it should be redirected. While far from guar-
anteed, human interpretable “principles” might still be found, but modern 
artifi cial neural network methods and experimental progress both argue that 
human interpretable principles might best be found at the levels of cortical 
architecture,  learning,  development, and perhaps even  evolution. For example, 
the principles could take the form not of a set of connections or activity pat-
terns that allow the brain to perform a computation, but of the rules of  activity-
dependent plasticity that enable these connections to be set up (see, Singer, 
this volume).

Even though the tuning curve has limitations as a research tool, it has not 
outlived its usefulness as a pedagogical tool. Indeed, it provides an elemen-
tary introduction to the idea of encoding functions in sensory systems (and 
projection functions in motor systems), which then motivates the idea of a 
high-dimensional, predictive response function. In this vein, tuning curves 
helped to promote an important conceptual advance: the idea of  population 
coding. Specifi cally, tuning curves considered from a population of neurons 
(as outlined above) naturally suggest that, when viewed as a group, the value 
of the currently presented stimulus can be “reported” to downstream brain re-
gions (population code), and they have motivated ideas and testing of how 
alternative population codes might estimate that value to guide behavior (e.g., 
examples in motion discrimination, motor control).

In sum, the idea of a tuning curve has helped carry the fi eld toward the 
contemporary goal of discovering accurately predictive neural response func-
tions (e.g., image computable encoding functions in vision) as well as toward 
defi ning contemporary concepts of population coding. However, we now know 
that as soon as we step beyond the very earliest stages of a sensory system, 
the tuning curve becomes overly simplistic as to only maintain introductory 
pedagogical value. Fortunately, the contemporary approaches outlined above 
are ready to carry the research forward.

Units of Analysis in Brain Tissue

Are Circuits Well Defi ned and Amenable to Study?

Considerable interest in neuroscience in recent years has focused on the con-
cept of  circuits. The general idea of a circuit comes from electronics. In that 
system, circuits are composed of discrete components and the connections be-
tween them are concrete. In the brain, the physical connectivity can also be 
fairly concrete. In some cases, different structures can also be well defi ned.

In the functional domain, however, this is not clear. Do defi ned single ana-
tomical structures have singular functions that are different from other struc-
tures that remain constant over time? This functional idea, as expressed in 
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typical box-and-arrow diagrams (with plus and minus signs) to describe the 
functional pathways of information, is wrong because it implies a high degree 
of discreteness that is hardwired: In a brain containing billions of neurons, we 
cannot defi ne nodes this cleanly unless every neuron has its own box. More 
importantly, given the high degree of recurrence in brain circuits, we cannot 
defi ne input and output this way.

Historically, the  cortical column was viewed as a key computational ele-
ment of a cortical (micro)circuit. A cortical column was initially defi ned (in the 
visual system) as a small cross section of cortex, in which neurons in the differ-
ent layers of cortex share some kind of common property, beyond similarities 
in their receptive fi eld position. For example, in V1, there exists a  retinotopic 
map in two dimensions along the  cortical sheet. Across layers, however, there 
is a similarity in the  ocular dominance and orientation selectivity of neurons 
at a given location on that cortical sheet. There can be discontinuities in the 
sensitivity to orientation and ocular dominance for adjacent locations along the 
cortical sheet, which can be thought of as the borders of columns.

In updating the concept of a column or canonical circuit in cortex, a key ob-
servation is that there are massive numbers of  excitatory recurrent connections. 
They are mostly local, and there is some degree of stereotypy both within and 
across layers (potentially also including the  thalamus). It should be noted that 
the probability of a connection falls off exponentially as a function of distance, 
calling into question the idea that there are regularly repeating boundaries be-
tween circuit elements. We should thus probably think of the cortical sheet 
as changing in a continuous fashion, with motifs of local connection patterns 
repeating smoothly.

Do such motifs perform basic sets of operations that are stereotypic across 
cortical areas, applied to whatever the inputs of that area may be? One such 
operation might be a convolution using a local kernel, followed by a static 
nonlinearity and normalization, as employed in artifi cial convolutional neural 
networks. This analogy, in fact, viably demonstrates how powerful such a con-
cept, in principle, is when applied to real-world pattern recognition tasks (e.g., 
object recognition), or when transferring it from one specifi c set of inputs to 
another (e.g., images vs. sounds).

Whether this analogy is deep or valid only on a superfi cial level is currently 
under debate. What is clear, however, is that in cortex such an operation would 
perform a much more complex and fl exible nonlinear operation involving a 
number of different cell types, recurrent excitatory and inhibitory feedback 
(within and across different layers) and potentially employing a whole range 
of different temporal delays to boost computation (see below); it would also 
be adjustable, for example, by  neuromodulation. While the instantiation of this 
“convolutional” operator in cortex (e.g., precise wiring diagram) might vary 
from site to site, the plasticity/developmental rules by which such an operator 
could arise may be the same across cortex (i.e., translational invariant; see also 
discussion of LIPU, above).
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Such a concept is comparatively familiar in the visual domain, but the ex-
tension to other domains is a more complicated question. For instance, in  audi-
tory processing, widely separated frequencies that are integer multiples of a 
common fundamental are likely to be grouped and processed similarly but may 
be processed by quite distinct neural populations at early stages of the pathway. 
In structures like  prefrontal cortex, neurons are responsive to sensory stimuli, 
but there is no known similarity of tuning to stimulus features in nearby neu-
rons. It could be the case that there is some other dimension of the input space 
that is well ordered, but this has yet to be established.

An open question, then, is how can we leverage modern experimental and 
computational tools to establish the existence of such an operator and to char-
acterize its computational capabilities? If approached anatomically, the region 
in cortex that we would have to analyze would likely cover several millimeters. 
A functional characterization would require a tight control of both the various 
inputs  and outputs to cortex. Inputs could be assessed by calcium imaging 
of axon terminals that provide input from other cortical areas or  thalamus. 
Assessing the output would require identifying the anatomical projection pat-
terns of putative output units. Developing adequate perturbations will certainly 
be crucial. An interesting fi rst step in this direction has been conducted by 
Constantinople and Bruno (2013), who show that silencing pharmacologi-
cally layer 4 in barrel cortex affects response properties of layer 5/6 neurons 
(assessed with intracellular recordings) very little, suggesting that it might be 
possible to study some components of the operator independently from others.

Recurrent Connections and Ongoing Activity

A key issue, which is arguably not a central element of many views of cortical 
coding, is the importance of  recurrent connections and the elaboration of sig-
naling in time that such recurrence necessarily involves (see Singer, this vol-
ume). Whether this recurrence is excitatory, inhibitory, or both has important 
implications for its impact on  neural coding and  function. A number of roles 
and effects of recurrence have been identifi ed or hypothesized, including the 
preservation of information over various rather short timescales (millisecond 
to second range), the generation of “ spontaneous” activity and activity fl uctua-
tions, as well as “ handshaking” to refl ect acknowledgment of signals passed 
from one ensemble to another, as in asynchronous computing.

As noted, not only are local neocortical and hippocampal circuitry distin-
guished by extensive recurrent excitatory connections, but there are also exten-
sive long recurrent loops between  cortex and thalamus, cortex and  cerebellum, 
and cortex and  basal ganglia, not to mention projections to and from attentional 
centers such as parietal cortex and frontal eye fi elds. Clearly, recurrent connec-
tions are a defi ning feature of neocortex. The prevalence of local recurrent con-
nectivity has the downside of apparently making these structures predisposed 
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to the pathophysiology of  epilepsy, thus suggesting that recurrence must also 
have benefi ts that justify this cost.

Dark Activity

Recurrent connections give rise, at least in part, to spontaneous, ongoing activ-
ity, or  activity changes that are not locked to the stimulus presentation (Figure 
13.2). Such aspects of neural signaling are called “dark activity” to refl ect 
the fact that we have very little understanding of their functional role. Early 
studies of reduced slice preparations demonstrated that isolated circuitry in 
acute slices of neocortex have a capacity for  spontaneous activity. Notably 
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Figure 13.2 Dark activity is a prominent component of cortical activity. Upper panel: 
Black line shows  local fi eld potential (LFP) recorded on a single channel in  marmoset 
middle temporal area, averaged over multiple representations of a drifting grating dur-
ing passive fi xation. Dots indicate spiking activity of a single middle temporal unit. Red 
dot indicates time of stimulus onset. The average LFP shows modest fl uctuations prior 
to stimulus onset. Lower panel: LFP recorded on a single trial drawn from the trials 
that were averaged in the upper panel. LFP fl uctuations are pronounced and similar in 
amplitude to the stimulus evoked response (arrow). Unpublished data from Z. Davis, L. 
Muller, T. J. Sejnowski, and J. H. Reynolds.
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it remains unclear how much this predisposition for  spontaneous activity, as 
a consequence of local recurrent connectivity, is engaged in the ongoing or 
spontaneous activity in vivo.

Dark activity is manifested, in part, in fl uctuations in the activity of indi-
vidual neurons or pairwise correlations that occurs even in the absence of a 
stimulus. Neural fl uctuations have often been treated as a form of neural noise 
(Zohary et al. 1994; Shadlen and Newsome 1998; Bair et al. 2001; Kohn and 
Smith 2005). Consistent with this interpretation,  attention can reduce neuro-
nal variability (Cohen and Maunsell 2009; Mitchell et al. 2009), possibly by 
regulation of lateral inhibitory circuitry (Schmitz and Duncan 2018), consis-
tent with the notion that attention may quench noise so as to improve sen-
sory encoding. Such fl uctuations have also recently been theorized to permit 
preservation of multiple items in neural ensembles as a form of time division 
multiplexing (Caruso et al. 2018).

These forms of variability may, however, refl ect other computational modes 
that are computed by the same neural population. It has been proposed that 
synchronous neural responses may act to regulate input gain (Swadlow et al. 
1998; Fries et al. 2001a; Salinas and Sejnowski 2001; Sohal et al. 2009) or 
aid information transfer between these populations (Fries 2015). Multichannel 
recording approaches have revealed traveling waves of neural activity in mul-
tiple cortical areas, from sensory to motor (Muller et al. 2018). These waves 
can be evoked by external stimuli and can also occur spontaneously. They are 
likely mediated by recurrent circuits, transiently modulating neural excitability 
as they pass.

Moreover, ongoing activity has implications for any consideration of corti-
cal population encoding of stimuli. It is diffi cult, for instance, to predict single- 
trial activity of any individual neuron simply knowing its tuning properties 
(~15% variance explained). In contrast, local population activity, including 
both tuned and untuned neurons, can be used to predict individual neuron activ-
ity on a moment-to-moment basis very well (up to 85%) in awake ambulating 
mice (Dechery and MacLean 2018). This argues strongly for a multineuronal-
based coding scheme that takes into account the state of the local population, 
presumably dictated in large part by local recurrent connections, rather than the 
stimulus alone. Cortical population responses can be seen as generative rather 
than passive.

At a larger spatial scale, inter-areal recurrent connections strongly regulate 
activity. For example, within the domain of vision, recurrent circuits from the 
frontoparietal attentional control network, including parts of the oculomotor 
system (Reynolds and Chelazzi 2004), impinge on visual cortical areas. In 
addition to modulating ongoing activity, as noted above, these feedback sig-
nals strongly modulate stimulus-evoked responses, increasing the strength of 
responses to attended neurons and, through local recurrent inhibitory circuits, 
suppressing responses to unattended stimuli (Moran and Desimone 1985; 
Reynolds and Heeger 2009; Ni and Maunsell 2017).
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At a more general level, recurrence of excitatory connections has the capac-
ity to promote both  inference (lateral and hierarchical) and learning. Recurrence 
also plays an integral part in multiple recurrent neural network models, such as 
 Boltzmann  machines,  liquid state machines, and  echo  networks.

Activity Evolves in Time

In the past, delays were ignored  in most models (especially in models that tried 
to identify computational principles), despite the fact that we all know that 
delays are omnipresent and range from sub-milliseconds to seconds. In addi-
tion, delays may result from several biological mechanisms: from conduction 
velocities,  axonal delays, delays that result from the activation of neurons, or 
produced by modulatory processes in the system.

Recent models in  machine  learning and  artifi cial intelligence, for instance, 
make use of  recurrent  networks to process time series, such as  speech. For 
learning the optimal connectivity for a certain task, recurrence is unfolded over 
time to map time to space. For this, a constant delay between neurons and lay-
ers is assumed. Delays have also been used to implement auxiliary functions 
in dynamical systems. Among these is the use of delays to stabilize oscillatory 
dynamics and  zero time lag  synchronization. None of these approaches, how-
ever, addresses the effect of distribution of delays, which seem to be the most 
appropriate description of delays in recurrent networks.

Therefore, understanding the impact of delay distributions on  computations 
remains a challenge. Recently a conceptual framework,  delay-coupled reser-
voir computing, was introduced (Lagorce and Benosman 2015). It extends the 
computational principles from  reservoir computing and explicitly uses single 
delays as well as delay distributions for the implementation of universal com-
putation (Appeltant et al. 2011). The framework uses the concept of delay-
coupled differential equations, which is a differential equation that receives a 
delayed and maybe transformed input back into the system.

In contrast to ordinary differential equations, this difference brings the sys-
tem into a whole new category of dynamical systems that map functions onto 
functions (i.e., infi nite dimensional mapping).

While the mathematical concept may be hard to understand in detail, there 
is a beautiful and simple analogical interpretation. The additional delay cou-
pling of a single dynamical system to itself (i.e., neuron) can be interpreted as 
a network of virtual neurons that are recurrently connected with a constrained 
connectivity matrix. Thus, the combination of delay-coupled single elements 
into a network generates a larger recurrent network composed of the real neu-
rons with real connectivity, and virtual neurons with virtual connectivity that 
are contributed by the delayed self-coupling. In other words, the effect of the 
delay coupling is a virtual increase in the number of neurons and an effective 
increase in the coding space.
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In sum, the framework of  delay-coupled reservoir computing helps us un-
derstand the effect of delays and distribution of delays on computation as a 
simple extension of the classical  reservoir computing with an increased num-
ber of neurons.

Context and Network State

Another aspect of the  neural code that recurrent connections may contribute to 
is the dependence of response properties on context, both in space and  time. 
What is happening around the neuron at a given moment and what has hap-
pened to it previously strongly infl uence the neuronal response. Cortical pyra-
midal cells are anatomically interconnected with thousands of other excitatory 
and inhibitory neurons; these connections likely mediate this spatiotemporal 
contextual infl uence. On the intracellular level, these contextual infl uences can 
be observed as synaptic barrages that change the likelihood of  action-potential 
generation, for example, by changing the membrane potential.

Considering the entire cerebral cortex at the same moment, the map of 
membrane potentials of all of the cortical neurons could be visualized as an ex-
citability map. The probability of activity fl owing in a particular path through 
the cortical network will be an interaction between this excitability map and 
incoming activity, which subsequently changes the excitability map. Thus, the 
excitability map shapes interaction networks of cortical neurons on a moment-
to-moment basis, allowing a great deal of fl exibility to be incorporated into 
cortical networks. To obtain stable perceptions and behavior, however, these 
highly context- and history-dependent network states are expected to exhibit 
stable states of activity that correspond to the stable  perception or action. We 
propose that an important feature of the cerebral cortex is the ability to gener-
ate both stable and highly fl exible patterns of activity in space and time that 
allow behavior to occur in both a stereotyped and fl exible manner.

Cortex Cannot be Understood in Isolation

The cerebral cortex evolved in mammals, joining other more ancient struc-
tures in early vertebrates that previously supported autonomous behavior. 
Presumably, the cortex enhanced survival in ways that we would like to under-
stand. Considering other parts of the brain with which the cortex interacts may 
help expand our understanding.

The cerebral cortex is tightly coupled to several important brain structures. 
The  thalamus is the gateway to the cortex but it also receives cortical feedback. 
Interestingly, the feedback connections are more numerous but weaker than the 
more robust feedforward projections, with a wide range of time delays in the 
10–100 ms range (Crick and Koch 1998). The  basal ganglia are another partner 
with the cortex. The cortex projects to the  striatum, which through a sequence 
of subcortical projections returns to the cortex through the thalamus, a loop 
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that takes around 100 ms. A third loop between the cortex and the  cerebellum, 
including the  prefrontal cortex, is reciprocally connected with the lateral cer-
ebellum. The contributions of these loops are essential for understanding what 
the neocortex contributes to  brain function.

All of these structures are interconnected with brainstem and sensory pe-
riphery, where signals that originate in the brain can even result in changes to 
the sensory input. For example, pupil dilation is infl uenced by auditory stimuli, 
arousal, and likely other factors. By infl uencing pupil dilation, such factors can 
infl uence the light reaching the retina with consequences for subsequent visual 
processing. Pupil diameter is highly correlated with state of central neuromod-
ulatory systems and the membrane potentials of cortical neurons (Reimer et al. 
2016). In the  auditory system, it has recently been shown that eye movements 
are accompanied by an eardrum oscillation (Gruters et al. 2018), again sug-
gesting information exchange between sensory pathways can be implemented 
via the control of the mechanisms of transduction.

Conclusions

At the time of the  Dahlem Workshop (Rakic and Singer 1988), only rudi-
mentary knowledge was available on how cortical circuits are organized, and 
this information was based on the concept of a  cortical column. Today we 
have a better idea of how the different types of neurons are connected and 
how they infl uence each other, especially the many different types of inhibi-
tory neurons. Thirty years ago, electrodes were placed in the cortex blindly 
and cortical neurons were recorded whose inputs and outputs were largely 
unknown. Although these recordings revealed diverse response properties, 
the observations were correlational, and it was diffi cult to determine how 
they infl uenced behavior. Today, optical recording techniques have made it 
possible to image activity in thousands of neurons simultaneously in dense 
clusters, and to infl uence their activity with  optogenetics. The emphasis has 
shifted from the properties of single neurons to the dynamical trajectories 
of neural populations in state space. Although these recordings are no lon-
ger “blind,” we are still far from having a functional account of cortical 
processing.

We have also gone from a paucity to a plethora of computational hypotheses 
for how information in  cortical circuits is organized. There are many ways that 
the features of the world encoded by cortical neurons could be combined and 
used to produce complex behaviors. Conceptual frameworks from  information 
theory, Bayesian probability theory, and dynamical systems theory might all 
give us useful insights and predictions for experiments.  Machine  learning algo-
rithms are being used to analyze the big data being generated in physiological 
and anatomical experiments. The convergence of deep learning architectures 
in  artifi cial intelligence with cortical architectures is generating insights into 
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how cortical hierarchies could enable object recognition in images and recog-
nition of  speech.

Over the next ten years, we anticipate that progress should accelerate rap-
idly, both because of improved techniques for probing and manipulating neu-
rons, and because of more sophisticated computational hypotheses for how to 
interpret neural recordings. Thus, in another thirty or so years time, the par-
ticipants of a future Cortex Forum should have a much better understanding 
of how the cerebral cortex transforms dynamic patterns of input activity, how 
memories are organized, and how, in concert with other brain areas, the cortex 
gives rise to our cognitive abilities.
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