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Neuroscience has long been an essential driver of progress in artificial intelli-
gence (AI). We propose that to accelerate progress in AI, we must invest in
fundamental research in NeuroAI. A core component of this is the embodied
Turing test, which challenges AI animal models to interact with the sensor-
imotor world at skill levels akin to their living counterparts. The embodied
Turing test shifts the focus from those capabilities like game playing and
language that are especially well-developed or uniquely human to those cap-
abilities – inherited from over 500million years of evolution – that are shared
with all animals. Building models that can pass the embodied Turing test will
provide a roadmap for the next generation of AI.

Over the coming decades, Artificial Intelligence (AI) will transform
society and the world economy in ways that are as profound as the
computer revolution of the last half century and likely at an even faster
pace. This AI revolutionpresents tremendous opportunities to unleash
human creativity and catalyze economic growth, relieving workers
from performing the most dangerous and menial jobs. However, to
reach this potential, we still require advances that will make AI more

human-like in its capabilities. Historically, neuroscience has been a
critical driver and source of inspiration for improvements in AI, par-
ticularly those that made AI more proficient in areas that humans and
other animals excel at, such as vision, reward-based learning, inter-
acting with the physical world, and language1,2. It can still play this role.
To accelerate progress in AI and realize its vast potential, we must
invest in fundamental research in “NeuroAI.”
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The seeds of the current AI revolution were planted decades ago,
mainly by researchers attempting to understand howbrains compute3.
Indeed, the earliest efforts to build an “artificial brain” led to the
invention of the modern “von Neumann computer architecture,” for
which John von Neumann explicitly drew upon the very limited
knowledge of the brain available to him in the 1940s4,5. Later, the
Nobel-prize winning work of David Hubel and TorstenWiesel on visual
processing circuits in the cat neocortex inspired the deep convolu-
tional networks that have catalyzed the recent revolution in modern
AI6–8. Similarly, the development of reinforcement learning was
directly inspired by insights into animal behavior and neural activity
during learning9–15. Now, decades later, applications of ANNs and RL
are coming so quickly that many observers assume that the long-
elusive goal of human-level intelligence—sometimes referred to as
“artificial general intelligence”—is within our grasp. However, in con-
trast to the optimism of those outside the field, many front-line AI
researchers believe that major breakthroughs are needed before we
can build artificial systems capable of doing all that a human, or even a
much simpler animal like a mouse, can do.

Although AI systems can easily defeat any human opponent in
games such as chess16 and Go17, they are not robust and often struggle
when faced with novel situations. Moreover, we have yet to build
effective systems that canwalk to the shelf, takedown the chess set, set
up the pieces, and move them around during a game, although recent
progress is encouraging18. Similarly, no machine can build a nest, for-
age for berries, or care for young. Today’s AI systems cannot compete
with the sensorimotor capabilities of a four-year old child or even
simple animals. Many basic capacities required to navigate new situa-
tions—capacities that animals have or acquire effortlessly—turn out to
be deceptively challenging for AI, partly because AI systems lack even
the basic abilities to interact with an unpredictable world. A growing
number of AI researchers doubt that merely scaling up current
approaches will overcome these limitations. Given the need to achieve
more natural intelligence in AI, it is quite likely that new inspiration
from naturally intelligent systems is needed19.

Historically, many key AI advances, such as convolutional ANNs
and reinforcement learning, were inspired by neuroscience. Neu-
roscience continues to provide guidance—e.g., attention-based neural
networks were loosely inspired by attention mechanisms in the
brain20–23—but this is often based on findings that are decades old. The
fact that such cross-pollination between AI and neuroscience is far less
common than in the past represents a missed opportunity. Over the
last decades, through efforts such as the NIH BRAIN initiative and
others, we have amassed an enormous amount of knowledge about
the brain. The emerging field of NeuroAI, at the intersection of neu-
roscience and AI, is based on the premise that a better understanding of
neural computation will reveal fundamental ingredients of intelligence

and catalyze the next revolution in AI. This will eventually lead to arti-
ficial agentswith capabilities thatmatch those of humans. TheNeuroAI
program we advocate is driven by the recognition that AI historically
owes much to neuroscience and the promise that AI will continue to
learn from it–but only if there is a large enough community of
researchers fluent in both domains. We believe the time is right for a
large-scale effort to identify and understand the principles of biolo-
gical intelligence and abstract those for application in computer and
robotic systems.

It is tempting to focus on the most characteristically human
aspects of intelligent behavior, such as abstract thought and reason-
ing. However, the basic ingredients of intelligence—adaptability, flex-
ibility, and the ability to make general inferences from sparse
observations—are already present in some form in basic sensorimotor
circuits, whichhave been evolving for hundreds ofmillions of years. As
AI pioneer Hans Moravec24 put it, abstract thought “is a new trick,
perhaps less than 100 thousand years old….effective only because it is
supported by this much older and much more powerful, though
usually unconscious, sensorimotor knowledge.” This implies that the
bulk of the work in developing general AI can be achieved by building
systems that match the perceptual and motor abilities of animals and
that the subsequent step to human-level intelligence would be con-
siderably smaller. This is good news because progress on the first goal
can rely on the favored subjects of neuroscience research—rats, mice,
and non-human primates—for which extensive and rapidly expanding
behavioral andneural datasets canguide theway. Thus, webelieve that
the NeuroAI path will lead to necessary advances if we figure out the
core capabilities that all animals possess in embodied sensorimotor
interaction with the world.

NeuroAI grand challenge: the embodied turing test
In 1950, Alan Turing proposed the “imitation game”25 as a test of a
machine’s ability to exhibit intelligent behavior indistinguishable from
that of a human (Fig. 1, left). In that game, now known as the Turing
test, a human judge evaluates natural language conversations between
a real human and a machine trained to mimic human responses. By
focusing on conversational abilities, Turing evaded asking whether a
machine could “think,” a questionhe considered impossible to answer.
The Turing test is based on the implicit belief that language represents
the pinnacle of human intelligence and that a machine capable of
conversation must surely be intelligent.

Until recently, no artificial system could come close to passing the
Turing test. However, a class of modern AI systems called “large lan-
guagemodels” can now engage in surprisingly cogent conversations26.
In part, their success reveals howeasilywecanbe tricked into imputing
intelligence, agency, and even consciousness to our interlocutor27.
Impressive though these systems are, because they are not grounded
in real-world experiences, they nonetheless continue to struggle with
many basic aspects of causal reasoning and physical common-sense.
Thus, the Turing test does not probe our prodigious perceptual and
motor abilities to interact with and reason about the physical world,
abilities sharedwith animals and honed through countless generations
of natural selection.

We therefore propose an expanded “embodied Turing test,” one
that includes advanced sensorimotor abilities (Fig. 1, right). The spirit
of the original Turing testwas to establish a simple qualitative standard
against which our progress toward building artificially intelligent
machines can be judged. This embodied Turing test would benchmark
and compare the interactions with the world of artificial systems ver-
sus humans and other animals. Similar ideas have been proposed
previously28–32. However, in light of recent advances enabling large-
scale behavioral and neural measurements, as well as large-scale
simulations of embodied agents in silico, we believe the time is ripe to
instantiate a major research effort in this direction. As each animal has
its own unique set of abilities, each animal defines its own embodied

Turing test Embodied Turing test

vs.

vs.

Fig. 1 | Turing tests: comparisons between the performance of AI systems and
their living counterparts. Left: The original Turing test as proposed by Alan
Turing25. If a human tester cannot determine whether their interlocutor is an AI
system or another human, the AI passes the test. Modern large language models
have made substantial progress towards passing this test26. Right: The embodied
Turing test. AnAI animalmodel—whether roboticor in simulation—passes the test if
its behavior is indistinguishable from that of its living counterpart. No AI systems
are close to passing this test. Here, an artificial beaver is tested on the species-
specific behavior of dam construction.
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Turing test: An artificial beaver might be tested on its ability to build a
dam, and an artificial squirrel on its ability to jump through trees.
Nonetheless, many core sensorimotor capabilities are shared by
almost all animals, and the ability of animals to rapidly evolve the
sensorimotor skills needed to adapt to new environments suggests
that these core skills provide a solid foundation. This implies that after
developing an AI system to faithfully reproduce the behavior of one
species, the adaptation of this system to other species—and even to
humans—may be straightforward. Below we highlight a few of the
characteristics that are shared across species.

Animals engage their environments
The defining feature of animals is their ability to move around and
interact with their environment in purposeful ways. Despite recent
advances in optimal control, reinforcement learning, and imitation
learning, robotics is still far from achieving animal-level abilities in
controlling their bodies and manipulating objects, even in simulation.
Of course, neuroscience can provide guidance about the kinds of
modular and hierarchical architectures that could be adapted to arti-
ficial systems to give them these capabilities33. It can also provide us
with design principles like partial autonomy (how low-level modules in
a hierarchy act semi-autonomously in the absence of input from high-
level modules) and amortized control (how movements generated at
first by a slow planning process are eventually transferred to a fast
reflexive system). These principles could guide the design of systems
for perception, action selection, locomotion, and fine-grained control
of limbs, hands, and fingers. Understanding how specific neural cir-
cuits participate in different tasks could also inspire solutions for other
forms of ‘intelligence,’ including in more cognitive realms. For exam-
ple,we speculate that incorporatingprinciples of circuitry for low-level
motor control could help provide a better basis for higher-level motor
planning in AI systems.

Animals behave flexibly
Another goal is to develop AI systems that can engage a large reper-
toire of flexible and diverse tasks in a manner that echoes the incred-
ible range of behaviors that individual animals can generate. Modern
AI can easily learn to outperform humans at video games like Breakout
using nothing more than pixels on a screen and game scores34. How-
ever, these systems, unlike human players, are brittle and highly sen-
sitive to small perturbations: changing the rules of the gameslightly, or
even a few pixels on the input, can lead to catastrophically poor
performance35. This is because these systems learn a mapping from
pixels to actions that need not involve an understanding of the agents
and objects in the game and the physics that governs them. Similarly, a
self-driving car does not inherently know about the danger of a crate
falling off a truck in front of it unless it has literally seen examples of
crates falling off trucks leading to bad outcomes. And even if it has
been trained on the dangers of falling crates, the system might con-
sider an empty plastic bag being blown out of the car in front of it as an
obstacle to avoid at all costs rather than an irritant, again, because it
doesn’t actually understandwhat a plastic bag is or how unthreatening
it is physically. This inability to handle scenarios that have not
appeared in the training data is a significant challenge to widespread
reliance on AI systems.

Tobesuccessful in anunpredictable and changingworld, an agent
must be flexible and master novel situations by using its general
knowledge about how such situations are likely to unfold. This is
arguably what animals do. Animals are born with most of the skills
needed to thrive or can rapidly acquire them from limited experience,
thanks to their strong foundation in real-world interaction, courtesy of
evolution and development36. Thus, it is clear that training from
scratch for a specific task is not how animals obtain their impressive
skills; animals do not arrive into the world tabula rasa and then rely on
large labeled training sets to learn. Although machine learning has

been pursuing approaches for sidestepping this tabula rasa limitation,
including self-supervised learning, transfer learning, continual learn-
ing, meta learning, one-shot learning and imitation learning37, none of
these approaches comes close to achieving the flexibility found in
most animals. Thus, we argue that understanding the neural circuit-
level principles that provide the foundation for behavioral flexibility in
the real-world, even in simple animals, has the potential to greatly
increase the flexibility and utility of AI systems. Put another way, we
can greatly accelerate our search for general-purpose circuits for real-
world interaction by taking advantage of the optimization process that
evolution has already engaged in38–45.

Animals compute efficiently
One important challenge for modern AI—that our brains have over-
come—is energy efficiency. Training a neural network requires enor-
mous amounts of energy. For example, training a large languagemodel
suchasGPT-3 requires over 1000megawatts-hours, enough topower a
small town for a day46. Biological systems are, by contrast, much more
energy efficient: The human brain uses about 20 watts47. The differ-
ence in energy requirement between brains and computers derives
from differences in information processing. First, at an algorithmic
level, modern large-scale ANNs, such as large language models26, rely
on very large feedforward architectures with self-attention to process
sequences over time23, ignoring the potential power of recurrence for
processing sequential information. One reason for this is that currently
we do not have efficient mechanisms for credit assignment calcula-
tions in recurrent networks. In contrast, brains utilizeflexible recurrent
architectures that can solve the temporal credit assignment problem
with great efficiency. Uncovering the mechanisms by which this hap-
pens could potentially enable us to increase the energy efficiency of
artificial systems. Alternatively, it has been proposed that the synaptic
dynamics within adjacent dendritic spines could serve as amechanism
for learning sequential structure, a scheme that could potentially be
efficiently implemented in hardware48. Second, at an implementation
level, neural circuits differ from digital computers. Neural circuits
compute effectively despite the presence of unreliable or “noisy”
components. For example, synaptic release, the primary means of
communication between neurons, canbe so unreliable thatonlyone in
every ten messages is transmitted49. Furthermore, neurons interact
mainly by transmitting action potentials (spikes), an asynchronous
communication protocol. Like the interactions between conventional
digital elements, the output of a neuron can be viewed as a string of 0 s
and 1 s; but unlike a digital computer, the energy cost of a “1” (i.e., of a
spike) is several orders of magnitude higher than that of a “0”50. As
biological circuits operate in a regime where spikes are sparse—even
very active neurons rarely fire atmore than 100 spikes per second and
typical cortical firing rates may be less than 1 spike/second—they are
much more energy efficient51. Spike-based computation has also been
shown to be orders of magnitude faster and more energy efficient in
recent hardware implementation52.

A roadmap for solving the embodied Turing test
How might artificial systems that pass the embodied Turing test be
developed? One natural approach would be to do so incrementally,
guided by our evolutionary history. For example, almost all animals
engage in goal-directed locomotion; they move toward some stimuli
(e.g., food sources) and away from others (e.g., threats). Layered on
top of these foundational abilities are more sophisticated skills, such
the ability to combine different streams of sensory information (e.g.,
visual and olfactory), to use this sensory information to distinguish
food sources and threats, to navigate to previous locations, to weigh
possible rewards and threats to achieve goals, and to interact with the
world in precise ways in service of these goals. Most of these—and
many other—sophisticated abilities are found to some extent in even
very simple organisms, such as worms. In more complex animals, such
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as fish andmammals, these abilities are elaborated and combinedwith
new strategies to enable more powerful behavioral strategies.

This evolutionary perspective suggests a strategy for passing the
embodied Turing test by breaking it down into a series of incremen-
tally challenging ones that build on each other, and iteratively opti-
mizing on this series53. Specifically, the embodied Turing test
comprises challenges that include a wide range of organisms used in
neuroscience research, including worms, flies, fish, rodents and pri-
mates. This would enable us to deploy the vast amount of knowledge
we have accumulated about the behavior, biomechanics, and neural
mechanisms of these model organisms to both precisely define each
species-specific embodied Turing test and serve as strong inductive
biases to guide the development of robust AI controllers that can
pass it.

The performance of these artificial agents could be compared
with that of animals. Rich behavioral datasets representing a large
swath of a species’ ethogram have now been collected and can be
deployed to benchmark performance on species-specific embodied
Turing tests. Furthermore, these datasets are being rapidly expanded
given new tools in 3D videography54–57. Additionally, detailed bio-
mechanical measurements support highly realistic animal body mod-
els, complete with skeletal constraints, muscles, tendons, and paw
features58. Combined with the open-sourcing of powerful, fast physics
simulators and virtual environments59,60, these models will afford the
opportunity for embodied Turing test research to be performed in
silico at scale33. Finally, existing extensive neural datasets with simul-
taneous neural recordings across multiple brain regions during beha-
vior, combined with increasingly detailed neural anatomy and
connectomics, provide a powerful roadmap for the design of AI sys-
tems that can control virtual animals to recapitulate the behaviors of
their in vivo counterparts and thus pass the embodied Turing test.

Importantly, the specifics of the embodied Turing test for each
species can be tuned to the needs of different groups of researchers.
We can test the capacity of AI systems in terms of sensorimotor con-
trol, self-supervised and continual learning, generalization, memory-
guided behavior on both short and life-long timescales, and social
interactions. Despite these potentially different areas of interest, the
challenges that compose the embodied Turing test can be standar-
dized to permit the quantification of progress and comparison
between research efforts. Standardization can be fostered by stake-
holders including government and private funders, large research
organizations such as the Allen Institute, andmajor collaborations like
the International Brain Lab, with an eye toward the development of
common APIs and support for competitions as has been an important
impetus for much progress in machine learning and robotics61,62.
Ultimately, virtual organisms that demonstrate successful recapitula-
tion of behaviors of interest can be adapted to the physical world with
additional efforts in robotics and deployed to solve real-world
problems.

What we need
Achieving these goals will require significant resources deployed in
threemain areas. First, wemust train a new generation of AI researchers
who are equally at home in engineering/computational science and
neuroscience. These researchers will chart fundamentally new direc-
tions in AI research by drawing on decades of progress in neu-
roscience. The greatest challengewill be in determining how to exploit
the synergies and overlaps in neuroscience, computational science,
and other relevant fields to advance our quest: identifying what details
of the brain’s circuitry, biophysics, and chemistry are important and
what can be disregarded in the application to AI. There is thus a critical
need for researcherswith dual training in AI and neuroscience to apply
insights from neuroscience to advance AI and to help design experi-
ments that generate new insights relevant to AI. Although there is
already some research of this type, it exists largely at the margins of

mainstream neuroscience; training in neuroscience has thus far been
motivated and funded mainly by the goal of improving human health
andof understanding the brain as such. This lack of alignment between
fields might explain, e.g., the multi-decade gap between Hubel and
Wiesel’s discovery of the structure of the visual system6 and the
development and application of convolutional neural networks in
modern machine learning8. Thus, the success of a NeuroAI research
program depends on the formation of a community of researchers for
whom the raison d'être of their training is to exploit synergies between
neuroscience and AI. Explicit design of new training programs can
ensure that the NeuroAI research community reflects the demo-
graphics of society as a whole and is equipped with the ethical tools
needed to ensure that the development of AI benefits society63.

Second, we must create a shared platform capable of developing
and testing these virtual agents. One of the greatest technical chal-
lenges that we will face in creating an iterative, embodied Turing test
and evolving artificial organisms to pass it is the amount of compu-
tational power required. Currently, training just one large neural net-
work model on a single embodied task (e.g. control of a body in
3-dimensional space) can take days on specialized distributed
hardware64. For multiple research groups to iteratively work together
to optimize and evaluate a large number of agents over multiple
generations on increasingly complex embodied Turing tests, a large
investment in a shared computational platform will be required. Much
like a particle accelerator in physics or large telescope in astronomy,
this sort of large-scale shared resource will be essential for moving the
brain-inspired AI research agenda forward. It will require a major
organizational effort, with government and ideally also industry sup-
port, that has as its central goal scientific progress on animal and
human-like intelligence.

Third, we must support fundamental theoretical and experimental
research on neural computation. We have learned a tremendous
amount about the brain over the last decades, through the efforts of
the NIH, in no small measure due to the BRAIN Initiative, and other
major funders, and we are now reaching an understanding of the vast
diversity of the brain’s individual cellular elements, neurons, and how
they function as parts of simple circuits. With these building blocks in
place, we are poised to shift our focus toward understanding how the
brain functions as an integrated intelligent system. This will require
insight into how a hundred billion neurons of a thousand different
types, each one communicatingwith thousands of other neurons, with
variable, adaptable connections, are wired together, and the compu-
tational capabilities—the intelligence—that emerges. We must reverse
engineer the brain to abstract the underlying principles. Taking
advantage of the powerful synergies between neuroscience and AI will
require program and infrastructure support to organize and enable
research across the disciplines at a large scale.

Fortunately, there is now broad political agreement that invest-
ments in AI research are essential to humanity’s technological future.
Indeed, IARPA (IntelligenceAdvancedResearchProjects Activity)was a
pioneer in this field, launching the Machine Intelligence from Cortical
Networks (MICrONS) project. This project spearheaded the collection
of an unprecedented data set consisting of a portion of a mouse
connectomeandassociated functional responseswith the specific goal
of catalyzing the development of next-generation AI algorithms65.
Nonetheless, community-wide efforts to bridge the fields of neu-
roscience and AI will require robust investments from government
resources, as well as oversight of project milestones, commercializa-
tion support, ethics, and big bets on innovative ideas. In the U.S., there
are currently some lines of federal resourcing, such as the NSF’s
National Artificial Intelligence Research Institutes, explicitly dedicated
to driving innovation and discovery in AI from neuroscience research,
but these are largely designed to support a traditional academicmodel
with different groups investigating different questions, rather than the
creation of a centralized effort that could create something like the
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embodied Turing test. Likewise, AI support grants in the U.S. are pre-
dominantly ancillary programs through the NIH, NSF, DoD, and even
the EPA—each of which have their own directives and goals—and this
pattern is shared by funding agencies globally. This leaves a significant
funding gap for technology development as an end in itself. The
creation of overarching directives either through existing entities, or
as a stand-alone agency, to support NeuroAI and AI research would
drive this mission and consequently unlock the potential for AI to
benefit humanity.

Conclusions
Despite the long history of neurosciencedriving advances in AI and the
tremendous potential for future advances, most engineers and com-
putational scientists in the field are unaware of the history and
opportunities. The influence of neuroscience on shaping the thinking
of von Neumann, Turing and other giants of computational theory are
rarely mentioned in a typical computer science curriculum. Leading AI
conferences suchasNeurIPS,which once served to showcase the latest
advances in both computational neuroscience and machine learning,
now focus almost exclusively on the latter. Even some researchers
aware of the historical importance of neuroscience in shaping the field
often argue that it has lost its relevance. “Engineers don’t studybirds to
build better planes” is the usual refrain. However, the analogy fails, in
part because pioneers of aviation did indeed study birds66,67, and some
still do68,69. Moreover, the analogy fails also at a more fundamental
level: The goal of modern aeronautical engineering is not to achieve
“bird-level” flight, whereas a major goal of AI is indeed to achieve (or
exceed) “human-level” intelligence. Just as computers exceed humans
inmany respects, suchas the ability to computeprimenumbers, so too
do planes exceed birds in characteristics such as speed, range and
cargo capacity. However, if the goal of aeronautical engineers were
indeed to build a machine with the “bird-level” ability to fly through
dense forest foliage and alight gently on a branch, they would be well-
advised to pay very close attention to how birds do it. Similarly, if AI
aims to achieve animal-level common-sense sensorimotor intelligence,
researchers would be well-advised to learn from animals and the
solutions they evolved to behave in an unpredictable world.
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