Computational models of category-selective brain regions enable high-throughput tests of selectivity

Title

Computational models of category-selective brain regions enable high-throughput tests of selectivity
Publication Type
Journal Article
Year of Publication
2021
Journal
Nature Communications
Volume
12
Issue
1
Date Published
Jan-12-2021
Abstract

Cortical regions apparently selective to faces, places, and bodies have provided important evidence for domain-specific theories of human cognition, development, and evolution. But claims of category selectivity are not quantitatively precise and remain vulnerable to empirical refutation. Here we develop artificial neural network-based encoding models that accurately predict the response to novel images in the fusiform face area, parahippocampal place area, and extrastriate body area, outperforming descriptive models and experts. We use these models to subject claims of category selectivity to strong tests, by screening for and synthesizing images predicted to produce high responses. We find that these high-responsepredicted images are all unambiguous members of the hypothesized preferred category for each region. These results provide accurate, image-computable encoding models of each category-selective region, strengthen evidence for domain specificity in the brain, and point the way for future research characterizing the functional organization of the brain with unprecedented computational precision.

Short Title
Nat Commun

Biblio File

Refereed Designation
Refereed