Publications

2024

Xie Y, Alter E, Schwartz J, DiCarlo JJ. Learning only a handful of latent variables produces neural-aligned CNN models of the ventral stream. In: Computational and Systems Neuroscience (COSYNE) . Computational and Systems Neuroscience (COSYNE) . Lisbon, Portugal; 2024. Available at: https://hdl.handle.net/1721.1/153744. (2.57 MB) Abstract

2023

Lee MJ, DiCarlo JJ. How well do rudimentary plasticity rules predict adult visual object learning?. Kietzmann TChristian. PLOS Computational Biology. 2023;19(12):e1011713. doi:10.1371/journal.pcbi.1011713. (11.69 MB) Abstract
Gaziv G, Lee MJ, DiCarlo JJ. Strong and Precise Modulation of Human Percepts via Robustified ANNs. In: Neural Information Processing Systems. Neural Information Processing Systems. New Orleans, Louisiana; 2023. Available at: https://openreview.net/pdf?id=5GmTI4LNqX. (3.26 MB) Abstract
Lee MJ, DiCarlo JJ. How well do rudimentary plasticity rules predict adult visual object learning?. Kietzmann TChristian. PLOS Computational Biology. 2023;19(12):e1011713. doi:10.1371/journal.pcbi.1011713. (11.69 MB) Abstract
Gaziv G, Lee MJ, DiCarlo JJ. Robustified ANNs Reveal Wormholes Between Human Category Percepts. arXiv. 2023. doi: https://doi.org/10.48550/arXiv.2308.06887 Focus to learn more. (3.53 MB) Abstract
Kuoch M, Chou C-N, Parthasarathy N, et al. Probing Biological and Artificial Neural Networks with Task-dependent Neural Manifolds. In: Conference on Parsimony and Learning (Proceedings Track). Conference on Parsimony and Learning (Proceedings Track). Hong Kong, China; 2023. Available at: https://openreview.net/forum?id=MxBS6aw5Gd. (2.75 MB) Abstract
Zador A, Escola S, Richards B, et al. Catalyzing next-generation Artificial Intelligence through NeuroAI. Nature Communications. 2023;14(1):1597. doi:10.1038/s41467-023-37180-x. (749.44 KB) Abstract

2022

Bagus AMarliawaty, Marques T, Sanghavi S, DiCarlo JJ, Schrimpf M. Primate Inferotemporal Cortex Neurons Generalize Better to Novel Image Distributions Than Analogous Deep Neural Networks Units. In: SVHRM Workshop at Neural Information Processing Systems (NeurIPS). SVHRM Workshop at Neural Information Processing Systems (NeurIPS). Lisbon, Portugal; 2022. Available at: https://openreview.net/pdf?id=iPF7mhoWkOl. (3.86 MB) Abstract
Geiger F, Schrimpf M, Marques T, DiCarlo JJ. Wiring Up Vision: Minimizing Supervised Synaptic Updates Needed to Produce a Primate Ventral Stream. In: International Conference on Learning Representations 2022 Spotlight. International Conference on Learning Representations 2022 Spotlight.; 2022. doi:10.1101/2020.06.08.140111. (1.45 MB) Abstract

2021

Zhuang C, Yan S, Nayebi A, et al. Unsupervised neural network models of the ventral visual stream. Proceedings of the National Academy of Sciences. 2021;118(3):e2014196118. doi:10.1073/pnas.2014196118. (2.71 MB) Abstract
Dapello J, Feather J, Marques T, et al. Neural Population Geometry Reveals the Role of Stochasticity in Robust Perception. In: Neural Information Processing Systems (NeurIPS). Neural Information Processing Systems (NeurIPS). Lisbon, Portugal; 2021. Available at: https://proceedings.neurips.cc/paper/2021/file/8383f931b0cefcc631f070480ef340e1-Paper.pdf. (4.04 MB) Abstract

2020

2019

Harris KD, Groh JM, DiCarlo JJ, et al. Funcitional Properties of Circuits, Cellular Populations, and Areas. In: Singer W, Sejnowski TJ, Rakic P The Neocortex.Vol 27. The Neocortex. Cambridge, MA: The MIT Press; 2019:223-265. doi:10.7551/mitpress/12593.001.0001. (1.06 MB) Abstract
Schrimpf M, Kubilius J, Hong H, et al. Using Brain-Score to Evaluate and Build Neural Networks for Brain-Like Object Recognition. In: Computational and Systems Neuroscience (COSYNE). Computational and Systems Neuroscience (COSYNE). Denver, CO; 2019. Abstract
Kubilius J, Schrimpf M, Hong H, et al. Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs. In: Neural Information Processing Systems. Neural Information Processing Systems.; 2019. doi:https://papers.nips.cc/paper/9441-brain-like-object-recognition-with-high-performing-shallow-recurrent-anns. Abstract

2018

Batista AP, DiCarlo JJ. Deep learning reaches the motor system. Nature Methods. 2018;15(10):772 - 773. doi:10.1038/s41592-018-0152-6. Abstract

2016

Yamins DLK, DiCarlo JJ. Eight open questions in the computational modeling of higher sensory cortex. Current Opinion in Neurobiology. 2016;37:114 - 120. doi:10.1016/j.conb.2016.02.001. Abstract

2015

Rajalingham R, Schmidt K, DiCarlo JJ. Comparison of Object Recognition Behavior in Human and Monkey. Journal of Neuroscience. 2015;35(35):12127 - 12136. doi:10.1523/JNEUROSCI.0573-15.2015. Abstract

2014

Afraz A, Yamins DLK, DiCarlo JJ. Neural Mechanisms Underlying Visual Object Recognition. Cold Spring Harbor Symposia on Quantitative Biology. 2014;79:99 - 107. doi:10.1101/sqb.2014.79.024729. Abstract

2013

Yamins DLK, Hong H, Cadieu CF, DiCarlo JJ. Hierarchical Modular Optimization of Convolutional Networks Achieves Representations Similar to Macaque IT and Human Ventral Stream. In: Advances in Neural Information Processing Systems. Advances in Neural Information Processing Systems. Lake Tahoe, Nevada, United States.; 2013. doi:https://papers.nips.cc/paper/4991-hierarchical-modular-optimization-of-convolutional-networks-achieves-representations-similar-to-macaque-it-and-human-ventral-stream. Abstract

2012

Issa EB, DiCarlo JJ. Precedence of the Eye Region in Neural Processing of Faces. Journal of Neuroscience. 2012;32(47):16666 - 16682. doi:10.1523/JNEUROSCI.2391-12.2012. Abstract
Majaj NJ, Hong H, Solomon EA, DiCarlo JJ. A unified neuronal population code fully explains human object recognition. In: Computation and Systems Neuroscience (COSYNE). Computation and Systems Neuroscience (COSYNE). Salt Lake City, Utah, USA; 2012. doi:http://www.cosyne.org/c/index.php?title=Cosyne_12. Abstract

2011

Pinto N, Barhomi Y, Cox DD, DiCarlo JJ. Comparing-State-of-the-Art Visual Features on Invariant Object Recognition Tasks. IEEE Workshop on Applications of Computer Vision (WACV). 2011:463-470. doi:10.1109/WACV.2011.5711540. Abstract

2010

DiCarlo JJ. Do we have a strategy for understanding how the visual system accomplishes object recognition?. In: Dickenson SJ, Leonardis A, Schiele B, Tarr MJ Object Categorization: Computer and Human Vision Perspectives. Object Categorization: Computer and Human Vision Perspectives. New York, NY, USA: Cambridge University Press; 2010. Abstract

2009

Pinto N, DiCarlo JJ, Cox DD. How far can you get with a modern face recognition test set using only simple features?. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops). IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops). Miami, FL: IEEE; 2009. doi:10.1109/CVPR.2009.5206605. (375.73 KB) Abstract
Zoccolan D, Oertelt N, DiCarlo JJ, Cox DD. A rodent model for the study of invariant visual object recognition. Proceedings of the National Academy of Sciences. 2009;106(21):8748 - 8753. doi:10.1073/pnas.0811583106. (730.6 KB) Abstract

2008