High-resolution three-dimensional microelectrode brain mapping using stereo microfocal X-ray imaging

TitleHigh-resolution three-dimensional microelectrode brain mapping using stereo microfocal X-ray imaging
Publication TypeJournal Article
Year of Publication2008
AuthorsCox DD, Papanastassiou AM, Oreper D, Andken BB, DiCarlo JJ
JournalJournal of Neurophysiology
Volume100
Pagination2966–2976
Date Publishednov
ISSN0022-3077
KeywordsAction Potentials, Animals, Brain, Brain Mapping, Imaging, Magnetic Resonance Imaging, Microelectrodes, Neurons, Stereotaxic Techniques, Wakefulness, {Three-Dimensional, {X-Rays}, } Macaca mulatta
Abstract

Much of our knowledge of brain function has been gleaned from studies using microelectrodes to characterize the response properties of individual neurons in vivo. However, because it is difficult to accurately determine the location of a microelectrode tip within the brain, it is impossible to systematically map the fine three-dimensional spatial organization of many brain areas, especially in deep structures. Here, we present a practical method based on digital stereo microfocal X-ray imaging that makes it possible to estimate the three-dimensional position of each and every microelectrode recording site in "real time" during experimental sessions. We determined the system's ex vivo localization accuracy to be better than 50 microm, and we show how we have used this method to coregister hundreds of deep-brain microelectrode recordings in monkeys to a common frame of reference with median error of {\textless}150 microm. We further show how we can coregister those sites with magnetic resonance images {(MRIs),} allowing for comparison with anatomy, and laying the groundwork for more detailed electrophysiology/functional {MRI} comparison. Minimally, this method allows one to marry the single-cell specificity of microelectrode recording with the spatial mapping abilities of imaging techniques; furthermore, it has the potential of yielding fundamentally new kinds of high-resolution maps of brain function.

URLhttp://dicarlolab.mit.edu/sites/dicarlolab.mit.edu/files/pubs/xray%20final.pdf
DOI10.1152/jn.90672.2008
Refereed DesignationRefereed

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer