Publications

Export 93 results:
Filters: Author is DiCarlo, James J.  [Clear All Filters]
2020
Rajalingham R, Sorenson M, Azadi R, Bohn S, DiCarlo JJ, Afraz A. Chronically implantable LED arrays for behavioral optogenetics in primates. bioRxiv. 2020. doi:10.1101/2020.09.10.291583. (2.64 MB)
Kar K, DiCarlo JJ. Fast Recurrent Processing Via Ventral Prefrontal Cortex is Needed by the Primate Ventral Stream for Robust Core Visual Object Recognition. Neuron. 2020. doi:https://doi.org/10.1016/j.neuron.2020.09.035. (3.92 MB)
Rajalingham R, Kar K, Sanghavi S, Dehaene S, DiCarlo JJ. The inferior temporal cortex is a potential cortical precursor of orthographic processing in untrained monkeys. Nature Communications. 2020;11(1). doi:10.1038/s41467-020-17714-3.
Schrimpf M, Kubilius J, Lee MJ, N. Murty ARatan, Ajemian R, DiCarlo JJ. Integrative Benchmarking to Advance Neurally Mechanistic Models of Human Intelligence. Neuron. 2020. doi:10.1016/j.neuron.2020.07.040. (1.04 MB)
Tremblay S, Acker L, Afraz A, et al. An Open Resource for Non-human Primate Optogenetics. Neuron. 2020. doi:10.1016/j.neuron.2020.09.027.
Gan C, Schwartz J, Alter S, et al. ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation. arXiv. 2020. Available at: https://arxiv.org/abs/2007.04954. (7.06 MB)
Zhuang C, Yan S, Nayebi A, et al. Unsupervised Neural Network Models of the Ventral Visual Stream. bioRxiv. 2020. doi:10.1101/2020.06.16.155556. (2.7 MB)
2018
Schrimpf M, Kubilius J, Hong H, et al. Brain-Score: Which Artificial Neural Network for Object Recognition is most Brain-Like?. bioRxiv. 2018. doi:https://doi.org/10.1101/407007.
Kubilius J, Schrimpf M, Nayebi A, Bear D, Yamins DLK, DiCarlo JJ. CORnet: Modeling the Neural Mechanisms of Core Object Recognition. bioRxiv. 2018. doi:https://doi.org/10.1101/408385.
Batista AP, DiCarlo JJ. Deep learning reaches the motor system. Nature Methods. 2018;15(10):772 - 773. doi:10.1038/s41592-018-0152-6.
Kar K, Kubilius J, Schmidt K, Issa EB, DiCarlo JJ. Evidence that recurrent circuits are critical to the ventral stream's execution of core object recognition behavior. bioRxiv. 2018. doi:https://doi.org/10.1101/354753.
Rajalingham R, Issa EB, Bashivan P, Kar K, Schmidt K, DiCarlo JJ. Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks. The Journal of Neuroscience. 2018;38(33):7255 - 7269. doi:10.1523/JNEUROSCI.0388-18.2018.
Rajalingham R, Issa EB, Bashivan P, Kar K, Schmidt K, DiCarlo JJ. Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks. bioRxiv. 2018. doi:https://doi.org/10.1101/240614.
Ohayon S, Caravaca-Aguirre A, Piestun R, DiCarlo JJ. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging. Biomedical Optics Express. 2018;9(4):1492-1509. doi:10.1364/BOE.9.001492.
Rajalingham R, DiCarlo JJ. Reversible inactivation of different millimeter-scale regions of primate IT results in different patterns of core object recognition deficits. bioRxiv. 2018. doi:https://doi.org/10.1101/390245.
Nayebi A, Bear D, Kubilius J, et al. Task-Driven Convolutional Recurrent Models of the Visual System. arXiv. 2018. doi:https://arxiv.org/abs/1807.00053.
Bashivan P, Tensen M, DiCarlo JJ. Teacher Guided Architecture Search. arXiv. 2018. doi:https://arxiv.org/abs/1808.01405.
2016
Aparicio PL, Issa EB, DiCarlo JJ. Neurophysiological Organization of the Middle Face Patch in Macaque Inferior Temporal Cortex. The Journal of Neuroscience. 2016;36(50):12729 - 12745. doi:10.1523/JNEUROSCI.0237-16.2016.
2014
Cadieu CF, Hong H, Yamins DLK, et al. Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition. Bethge M. PLoS Computational Biology. 2014;10(12):e1003963. doi:10.1371/journal.pcbi.1003963.
Afraz A, Yamins DLK, DiCarlo JJ. Neural Mechanisms Underlying Visual Object Recognition. Cold Spring Harbor Symposia on Quantitative Biology. 2014;79:99 - 107. doi:10.1101/sqb.2014.79.024729.
2013
Yamins DLK, Hong H, Cadieu CF, DiCarlo JJ. https://papers.nips.cc/paper/4991-hierarchical-modular-optimization-of-convolutional-networks-achieves-representations-similar-to-macaque-it-and-human-ventral-stream. In: Advances in Neural Information Processing Systems. Advances in Neural Information Processing Systems. Lake Tahoe, Nevada, United States.; 2013. doi:https://papers.nips.cc/paper/4991-hierarchical-modular-optimization-of-convolutional-networks-achieves-representations-similar-to-macaque-it-and-human-ventral-stream.
Baldassi C, Alemi-Neissi A, Pagan M, DiCarlo JJ, Zecchina R, Zoccolan D. Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons. PLoS Computational Biology. 2013;9(8):e1003167. doi:10.1371/journal.pcbi.1003167.
2012
Majaj NJ, Hong H, Solomon EA, DiCarlo JJ. A unified neuronal population code fully explains human object recognition. In: Computation and Systems Neuroscience (COSYNE). Computation and Systems Neuroscience (COSYNE). Salt Lake City, Utah, USA; 2012. doi:http://www.cosyne.org/c/index.php?title=Cosyne_12.
2010
DiCarlo JJ. Do we have a strategy for understanding how the visual system accomplishes object recognition?. In: Dickenson SJ, Leonardis A, Schiele B, Tarr MJ Object Categorization: Computer and Human Vision Perspectives. Object Categorization: Computer and Human Vision Perspectives. New York, NY, USA: Cambridge University Press; 2010.
Li N, DiCarlo JJ. Does the visual system use natural experience to construct size invariant object representations?. Computation and Systems Neuroscience (COSYNE). 2010. doi:10.3389/conf.fnins.2010.03.00326.
Pinto N, DiCarlo JJ, Cox DD. A High-Throughput Screening Approach to Biologically-Inspired Object Recognition. Learning Workshop-Computation and Systems Neuroscience (COSYNE). 2010.
Pinto N, Majaj NJ, Barhomi Y, Solomon EA, Cox DD, DiCarlo JJ. Human versus machine: comparing visual object recognition systems on a level playing field. Computation and Systems Neuroscience (COSYNE). 2010. doi:10.3389/conf.fnins.2010.03.00283.
Issa EB, Papanastassiou AM, Andken BB, DiCarlo JJ. Towards large-scale, high resolution maps of object selectivity in inferior temporal cortex. Computation and Systems Neuroscience (COSYNE). 2010. doi:10.3389/conf.fnins.2010.03.00154.
Li N, DiCarlo JJ. Unsupervised Natural Visual Experience Rapidly Reshapes Size-Invariant Object Representation in Inferior Temporal Cortex. Neuron. 2010;67(6):1062 - 1075. doi:10.1016/j.neuron.2010.08.029.
Aparicio PL, Issa EB, DiCarlo JJ. What is the middle face patch?. Society for Neuroscience. 2010;40:581.8. Available at: https://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=e08f5ff4-1ba9-4faf-a459-5c9d4be0a1bf&cKey=36fa0d7d-3e83-4910-be75-57d361ae9e58&mKey=%7bE5D5C83F-CE2D-4D71-9DD6-FC7231E090FB%7d.
2009
Pinto N, Doukhan D, DiCarlo JJ, Cox DD. A High-Throughput Screening Approach to Discovering Good Forms of Biologically Inspired Visual Representation. Friston KJ. PLoS Computational Biology. 2009;5(11):e1000579. doi:10.1371/journal.pcbi.1000579. (538.96 KB) (141.46 KB)
Pinto N, DiCarlo JJ, Cox DD. How far can you get with a modern face recognition test set using only simple features?. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops). IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops). Miami, FL: IEEE; 2009. doi:10.1109/CVPR.2009.5206605. (375.73 KB)
Li N, DiCarlo JJ. The size invariance of neuronal object representations can be reshaped by temporally contiguous visual experience. Society for Neuroscience. 2009:306.10. Available at: https://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=8bb461de-0fd1-4f6a-9dfe-d62b65382083&cKey=507938c9-dc2c-4a47-a74f-601df562eddc&mKey=%7b081F7976-E4CD-4F3D-A0AF-E8387992A658%7d.
Papanastassiou AM, de Beeck HPOp, Andken BB, DiCarlo JJ. A systematic exploration of the relationship of fMRI signals and neuronal activity in the primate temporal lobe. Society for Neuroscience. 2009.
Pinto N, Cox DD, DiCarlo JJ. Unlocking Biologically-Inspired Computer Vision: a High-Throughput Approach. NVIDIA GPU Technology Conference. 2009.
Pinto N, Cox DD, DiCarlo JJ. Unlocking Brain-Inspired Computer Vision. GPU@BU. 2009.
Pinto N, Cox DD, DiCarlo JJ. The Visual Cortex and GPUs. GPU Computing for Biomedical Research. 2009.
Li N, Cox DD, Zoccolan D, DiCarlo JJ. What Response Properties Do Individual Neurons Need to Underlie Position and Clutter “Invariant” Object Recognition?. Journal of Neurophysiology. 2009;102(1):360 - 376. doi:10.1152/jn.90745.2008. (773.41 KB)
2008
Rust NC, DiCarlo JJ. Concurrent increases in selectivity and tolerance produce constant sparseness across the ventral visual stream. Computation and Systems Neuroscience (COSYNE). 2008. Available at: http://www.cosyne.org/c/images/8/8e/Cosyne_pf_new.pdf.
Pinto N, DiCarlo JJ, Cox DD. Establishing Good Benchmarks and Baselines for Face Recognition. In: European Conference on Computer Vision-Faces in 'Real-Life' Images Workshop. European Conference on Computer Vision-Faces in 'Real-Life' Images Workshop. Marseille, France: EECV; 2008. (1.74 MB)
Cox DD, Papanastassiou AM, Oreper D, Andken BB, DiCarlo JJ. High-Resolution Three-Dimensional Microelectrode Brain Mapping Using Stereo Microfocal X-ray Imaging. Journal of Neurophysiology. 2008;100(5):2966 - 2976. doi:10.1152/jn.90672.2008. (1.25 MB)
Cox DD, Pinto N, Doukhan D, Corda B, DiCarlo JJ. A high-throughput screening approach to discovering good forms of visual representation. Computation and Systems Neuroscience (COSYNE). 2008.
Rust NC, DiCarlo JJ. Inferior temporal cortex robustly signals encounters with new objects, but is not an online representation of the visual world. Society for Neuroscience. 2008:316.6. Available at: https://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=ee83e7f7-5aea-4ec8-a948-436658d20e37&cKey=fc64f0af-c81e-4b0e-b809-796349279531&mKey=%7bAFEA068D-D012-4520-8E42-10E4D1AF7944%7d.
Li N, DiCarlo JJ. Natural experience drives online learning of tolerant object representations in visual cortex. Computation and Systems Neuroscience (COSYNE). 2008. Available at: http://www.cosyne.org/c/images/8/8e/Cosyne_pf_new.pdf.
Zoccolan D, Cox DD, Oertelt N, Radwam B, Tsang S, DiCarlo JJ. Is the rodent a valuable model system for studying invariant object recognition?. Computation and Systems Neuroscience (COSYNE). 2008. Available at: http://www.cosyne.org/c/images/8/8e/Cosyne_pf_new.pdf.
Li N, DiCarlo JJ. Unsupervised Natural Experience Rapidly Alters Invariant Object Representation in Visual Cortex. Science. 2008;321:1502 - 1507. doi:10.1126/science.1160028.
Li N, DiCarlo JJ. Unsupervised natural experience rapidly alters invariant object representation in visual cortex. Society for Neuroscience. 2008:316.5. Available at: https://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=ee83e7f7-5aea-4ec8-a948-436658d20e37&cKey=9a873eb3-f8d3-48b5-8df9-9f7b2ef0a3d9&mKey=%7bAFEA068D-D012-4520-8E42-10E4D1AF7944%7d.
Pinto N, Cox DD, Corda B, Doukhan D, DiCarlo JJ. Why is real-world object recognition hard?: Establishing honest benchmarks and baselines for object recognition. Computation and Systems Neuroscience (COSYNE). 2008.
2007
de Beeck HPOp, Deutsch JA, Vanduffel W, Kanwisher NG, DiCarlo JJ. A Stable Topography of Selectivity for Unfamiliar Shape Classes in Monkey Inferior Temporal Cortex. Cerebral Cortex. 2007;18(7):1676 - 1694. doi:10.1093/cercor/bhm196. (1.58 MB)
DiCarlo JJ, Cox DD. Untangling invariant object recognition. Trends in Cognitive Sciences. 2007;11(8):333 - 341. doi:10.1016/j.tics.2007.06.010. (1.48 MB)
1999
DiCarlo JJ, Johnson KO. Form processing in area 3b. International Symposium on Brain Mechanisms of Tactile Perception. 1999.
DiCarlo JJ, Johnson KO. Velocity Invariance of Receptive Field Structure in Somatosensory Cortical Area 3b of the Alert Monkey. The Journal of Neuroscience. 1999;19(1):401 - 419. doi:10.1523/JNEUROSCI.19-01-00401.1999. (847.96 KB)
1998
DiCarlo JJ, Johnson KO, Hsiao SS. Structure of Receptive Fields in Area 3b of Primary Somatosensory Cortex in the Alert Monkey. The Journal of Neuroscience. 1998;18(7):2626 - 2645. doi:10.1523/JNEUROSCI.18-07-02626.1998. (1.33 MB)
1992
Schmajuk NA, DiCarlo JJ. Stimulus configuration, classical conditioning, and hippocampal function. Psychological Review. 1992;99(2):268 - 305. doi:10.1037/0033-295X.99.2.268. (4.3 MB)
1991
Schmajuk NA, DiCarlo JJ. A hippocampal theory of schizophrenia. Behavioral and Brain Sciences. 1991;14:47-49. doi:10.1017/S0140525X00065353.
Schmajuk NA, DiCarlo JJ. Neural dynamics of hippocampal modulation of classical conditioning. In: Commons M, Grossberg S, Staddon JER Neural Network Models of Conditioning and Action. Neural Network Models of Conditioning and Action. Hillsdale, NJ: Lawrence Erlbaum Association; 1991.
Schmajuk NA, DiCarlo JJ. A neural network approach to hippocampal function in classical conditioning. Behavioral Neuroscience. 1991;105(1):82 - 110. doi:10.1037/0735-7044.105.1.82. (3.46 MB)
1989
Schmajuk NA, DiCarlo JJ. Neural dynamics of hippocampal modulation of classical conditioning. 12th Symposium on Models of Behavior: Neural Network Models of Conditioning and Action. 1989.