Publications

Export 20 results:
Filters: Author is Cox, David D.  [Clear All Filters]
2011
Pinto N, Barhomi Y, Cox DD, DiCarlo JJ. Comparing-State-of-the-Art Visual Features on Invariant Object Recognition Tasks. IEEE Workshop on Applications of Computer Vision (WACV). 2011:463-470. doi:10.1109/WACV.2011.5711540.
2009
Pinto N, Doukhan D, DiCarlo JJ, Cox DD. A High-Throughput Screening Approach to Discovering Good Forms of Biologically Inspired Visual Representation. Friston KJ. PLoS Computational Biology. 2009;5(11):e1000579. doi:10.1371/journal.pcbi.1000579. (538.96 KB) (141.46 KB)
Pinto N, DiCarlo JJ, Cox DD. How far can you get with a modern face recognition test set using only simple features?. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops). IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops). Miami, FL: IEEE; 2009. doi:10.1109/CVPR.2009.5206605. (375.73 KB)
Pinto N, Cox DD, DiCarlo JJ. Unlocking Biologically-Inspired Computer Vision: a High-Throughput Approach. NVIDIA GPU Technology Conference. 2009.
Pinto N, Cox DD, DiCarlo JJ. Unlocking Brain-Inspired Computer Vision. GPU@BU. 2009.
Pinto N, Cox DD, DiCarlo JJ. The Visual Cortex and GPUs. GPU Computing for Biomedical Research. 2009.
Li N, Cox DD, Zoccolan D, DiCarlo JJ. What Response Properties Do Individual Neurons Need to Underlie Position and Clutter “Invariant” Object Recognition?. Journal of Neurophysiology. 2009;102(1):360 - 376. doi:10.1152/jn.90745.2008. (773.41 KB)
2007
DiCarlo JJ, Cox DD. Untangling invariant object recognition. Trends in Cognitive Sciences. 2007;11(8):333 - 341. doi:10.1016/j.tics.2007.06.010. (1.48 MB)